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ABSTRACT  

The real-time images captured by agricultural machinery on-board monitoring equipment have complex 

backgrounds and different shooting angles. Especially for straw monitoring tasks, the utilization rate of images 

is relatively low. This paper presents a novel image classification and effective region segmentation method 

for straw returning in agriculture, leveraging semantic segmentation to enhance the efficiency of agricultural 

data analysis. The study addresses the challenges of manual straw cover analysis by proposing an automated 

approach to select images that meet monitoring standards. The methodology employs an encoder-decoder 

structure model, enriched with residual units, multi-scale convolution, and attention mechanisms. This model 

classifies images by calculating the pixel proportions of various scene categories and segments farmland areas 

to be inspected by incorporating distance information. The model's design is tailored to handle the complex 

and variable natural environments typical of vehicular monitoring scenarios, where semantic object boundaries 

can be fuzzy. The experimental results demonstrate that the proposed method achieves an overall sample 

classification accuracy of 93% for straw returning image classification and an 85.37% accuracy in dividing 

areas to be inspected. The method outperforms several mainstream semantic segmentation models, providing 

a more accurate and efficient means of processing agricultural monitoring images. The integration of distance 

information proves particularly beneficial in distinguishing the farmland areas under inspection, leading to 

clearer segmentation and more reliable data for agricultural decision-making. In conclusion, the study 

contributes to the field of agricultural intelligence by offering a robust method for image analysis that can be 

applied to optimize the use of straw return monitoring data. 

 

摘要 

农机车载监控设备拍摄的实时图像背景复杂，特别是对于秸秆定量检测任务，图像的利用率相对较低。本文提

出了一种基于语义分割的图像高效分类和背景区域分割方法，通过计算各种场景类别的像素比例对图像进行分

类，筛选出符合秸秆检测要求的图像，再并结合距离信息进一步分割秸秆检测区域，提高车载图像数据分析利

用效率与秸秆检测准确度，以此来解决农田大数据杂乱，利用率低的问题。该方法采用编码器-解码器模型结

构，融合了轻量型残差单元、多尺度卷积和注意力机制，在保证分割边界清晰的情况下降低模型参数。从不同

模型的对比结果和可视化处理结果可以表明：该方法对秸秆图像分类的总体样本分类准确率为 93%，对待检区

域的划分准确率为 85.37%，该模型对背景类别中农田的分割效果更好，空间位置更加准确。因此，本文的研

究方法能提高秸秆信息化监测手段的应用效率，为农田监测图像的处理提供了一种更准确、更高效的方法。 

 

INTRODUCTION 

 In recent years, with the aim of protecting the precious and rare black soil resources on Earth, there 

has been a particular emphasis on promoting conservation tillage techniques, such as straw mulch cover and 

no-tillage (Yu et al., 2015), supported by information technology-enabled remote monitoring to enhance 

agricultural production. Currently, the monitoring terminals for conservation tillage have achieved the basic 

collection, transmission, and storage of agricultural big data, obtaining vast amounts of data on no-tillage 

machinery operation conditions and field straw vehicle monitoring images. However, for calculating the straw 

cover rate, data still require manual organization and human analysis, resulting in limited data application depth 

and low model technical content.  
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Therefore, it is imperative to strengthen the application research of data analysis technology in the 

context of conservation tillage, efficiently utilize straw cover images, and automatically select straw quantitative 

detection images that meet monitoring standards (Wu et al., 2017). 

 Recent research findings indicate that in order to improve detection accuracy, image semantic 

segmentation methods are transitioning from probabilistic graphical models to deep learning models (Habas 

et al., 2010; Chung et al., 2010; Liu et al., 2010; Long et al., 2015; Chen et al., 2018; Litjens et al., 2017; Qi et 

al., 2017; Jiang et al., 2020). For instance, Zhou proposed a method that combines fully convolutional networks 

with conditional random fields for image semantic segmentation, merging probabilistic graphs with deep 

learning while maintaining computational sensitivity and global consistency (Zhou et al., 2016). Ronneberger 

introduced a U-Net structure that effectively utilizes annotated samples through data augmentation, achieving 

end-to-end model training with fewer samples (Ronneberger et al., 2015). Liu Kaidong employed U-Net as the 

backbone network and introduced a model based on R2U-Net and compact dilated convolution for segmenting 

and recognizing target muscle areas (Liu et al., 2020). Badrinarayanan presented a fully convolutional neural 

network architecture called SegNet with an encoder-decoder structure (Badrinarayanan et al., 2017). The 

encoder is used for object information parsing, while the decoder employs upsampling to restore the reduced 

feature maps to their original size. Lin introduced a universal multi-path optimization network, RefineNet, this 

model utilizes remote residual connections to capture all available information during the downsampling 

process, directly capturing high-level semantic features (Lin et al., 2017). Zhao Shida applied generative 

adversarial networks and transfer learning to train ICNet, enabling fine segmentation of sheep skeletons' spine, 

ribs, and neck under different lighting conditions (Zhao et al., 2021). Fang Peng integrated attention 

mechanisms, residual networks, and feature pyramids to extract image features, using a region generation 

network for broiler target classification, segmentation, and contour extraction (Fang et al., 2021). Liu Wenya 

applied semantic segmentation to remote sensing images, proposing an automated extraction architecture 

based on DeepLabv3+ that can eliminate interference from field pixels and accurately extract urban green 

spaces (Liu et al., 2021). 

 Although the above methods have solved the problem of detection accuracy in specific fields, there 

are still shortcomings in the domain of agricultural machinery onboard monitoring. Image quality is the key to 

straw detection, but it is often overlooked. 

 In view of the above problems, this paper addresses the impact of changes in the angle of in-vehicle 

cameras on the proportion of non-farmland backgrounds within the visual range and the visual distance on the 

division of areas to be inspected. It introduces a method for sample classification and the division of areas to 

be inspected based on semantic segmentation. Building upon the encoder-decoder structure, the paper 

incorporates key techniques such as residual units, multi-scale convolution, and attention mechanisms. It 

determines image categories by calculating the proportion of various background pixels in the image and 

simultaneously defines distance levels for the spatial distribution of farmland, establishing clear boundaries for 

the division of areas to be inspected in farmland. 

 

MATERIALS AND METHODS 

Problem analysis 

 The prerequisite for the application of straw return monitoring data is that the proportion of the fields 

to be inspected within the image range is large, and the distribution of straw is clear. It is common to retrofit 

agricultural machinery with rear-mounted cameras to make them intelligent. However, the stability and 

consistency of image quality are often compromised due to variations in the installation position and angle of 

the cameras. 

 Images captured by monocular cameras mostly follow a long-tail distribution, with areas closer to the 

camera having higher resolution, making it difficult to clearly observe the distribution of straw in distant pixels 

(Sreepada et al., 2020). When the angle of view is too low, the machinery occupies the lower and middle parts 

of the image, obscuring the effective monitoring area of the field. When the angle of view is too high, the image 

may display a prominent skyline, the agricultural field area is reduced, and distant field objects appear blurred. 

Both of these image types fail to meet the requirements for straw monitoring. 

 As shown in Fig. 1, the left image illustrates the schematic of the manual method for measuring straw 

cover percentage using a rope. It uses a 50-meter rope divided into 250 collection points on average, it is 

placed along the diagonal of the plot to be tested, and the percentage of collection points where straw is 

present is calculated to determine the straw cover percentage of that plot. According to the area calculation 

formula, this method is most efficient when the plot is a square.  
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The 250 points can represent the collection area composed of 31,250 points. These collection points 

can be analogized to image resolution. Given that the YB-DB015A onboard camera has a spatial resolution of 

320×240, it ensures that the agricultural background in the image is not less than 40%. As shown in the two 

images on the right, the intersection point of the camera's optical axis with the ground is always located at the 

center of the image. Therefore, as long as the center distance "c" exceeds 15 meters, it ensures that the pixel 

proportion of the areas to be inspected in the image is not less than 40%. Thus, based on the correspondence 

between the horizon vanishing point, the field of view angle "φ," and the pitch angle "σ," the maximum 

proportion of sky background at this point is 30%, and the machinery occupies no more than 10%. 

 

Fig. 1 - Pull rope method and camera imaging principle 

 Therefore, the image classification standards in this article are different from traditional images, it does 

not classify images based on scene categories but rather relies on combinations of pixel proportions in different 

scenes, images are divided into four categories (Xiao et al., 2015; Liang et al., 2020; Miao et al., 2015). Pixel-

level semantic segmentation method perform both image classification and segmentation tasks simultaneously 

(Minaee et al., 2020; Jadhavo et al., 2018). 

 

Experimental Data 

 To illustrate and verify the farmland background recognition and segmentation method proposed 

in this study, 1700 images were collected from straw application field monitored by image grabbing in 

Da'an City, Siping, Jilin province from April 15 through June 20, 2021. The conservation tillage types in 

Jilin province were Minimum-Tillage and No-Tillage of straw land covering. In order to meet the needs of 

straw monitoring, the monitoring terminals which are about more than 50 are installed on No -tillage 

planters, and the images were collected on sunny or daytime days at different times and environments. A 

YB-DB015A camera with a resolution of 320×240 was used and placed on front of the cab roof and initially 

tilted down 60 degrees toward the ground to get the straw image in front of the planter.  
 

     

Fig. 2 - No-tillage layer in Da’an City 

 Based on the pixel proportions of different categories in the agricultural scene, sample images are 

divided into four classes (C1: high angle; C2: low angle; C3: standard image; C4: to-be-processed image). 

Each class has 365, 284, 325, and 726 images, respectively. As shown in Fig. 3, C1 images have a sky 

proportion greater than 30%, indicating a high angle that does not meet monitoring requirements.   
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C2 images have a machinery proportion exceeding 10%, indicating a low angle that does not meet 

monitoring requirements. C3 images have an agricultural field proportion of approximately 90%, 

representing standard images for straw cover monitoring. C4 images have a sky proportion less than 30% 

and a machinery proportion less than 10%, indicating to-be-processed images that can meet monitoring 

requirements through the division of areas to be inspected in the field . 

  
(A) C1: High angle (B) C2: Low angle 

  
(C) C3:Standard image (D) C4:To be processed 

Fig. 3 - Typical images of four categories 

 All images were marked in LABELME and saved in red, green, and yellow in JSON format. In 

order to get label data, JSON was converted to single channel image. Moreover, for the fuzzy farmland in 

the distance (unable to distinguish straw distribution), distance information was used as supplementary 

information to segment effective farmland. The label picture and distance hierarchical map was showed in Fig. 4. 

 

     
 (A) Label image             (B) Distance hierarchical map 

Fig. 4 - Annotated images of samples 

 Furthermore, the hardware setup used in this study consisted of a Precision T7920 tower 

workstation equipped with two Intel Xeon SP series processors and an Nvidia Quadro P2200 graphics 

card. The operating system utilized was Ubuntu Linux 18.04, and the development software included 

PyCharm and the PyTorch framework. 

 

Model structure analysis 

 The design of model is an encoder-decoder structure, including a lightweight and efficient feature 

extraction module and a decoding module based on multi -scale convolution and ordinary convolution as 

shown in Fig. 5. In order to extract the background features in filed, the encode module consists of three 

layers. Thus, the image was reduced to 80×60 pixels but increased to 128 features in the end by 

convolution and down sampling. The decode module includes multiple channels to analyz e the semantic 

information between multi-scale features, wherefore the background label and distance level of the pixel 

are determined. 
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Fig. 5 - General structure diagram of the model 

Small paraments encoder 

 In order to facilitate real time computation in filed, reducing the number of parameters and the 

calculation process are the key to model construction. In this study, with the increase of the number of 

encode layer, convolution kernel size and channel number play a major role. Assuming the optimization 

unit is not considered, the number of parameters is described as follows:  

  

𝑁𝑝~𝑂(∑ 𝐾𝑙𝑥 ∙ 𝐾𝑙𝑦 ∙ 𝐶𝑙−1 ∙ 𝐶𝑙
𝐷
𝑙=1 )                                                               (1)

 
where, Cl−1 is the number of input channel; Cl is the number of output channel; Kly and  Klx are the size of 

convolution kernel.  

 Then, the amount of calculation can be expressed as: 

𝑁𝑐~𝑂(∑ 𝐾𝑙𝑥 ∙ 𝐾𝑙𝑦 ∙ 𝑀𝑙𝑥 ∙ 𝑀𝑙𝑦 ∙ 𝐶𝑙−1 ∙ 𝐶𝑙
𝐷
𝑙=1 )                                                    (2) 

where，Mlx and Mly are the size of feature map in layer l. 

 Suppose the parameters of hybrid dilated convolution are not considered, the size of convolution 

kernel is 3×3, and the input channels are divided into two branches. Methods after improvement, the product 

of channels is reduced by 4 times, and convolution kernel is reduced by 1.5 times. Therefore, after the two 

channels are added, the parameters and the calculation are reduced to one third of the former one. 
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Fig. 6 - Residual network structure of block convolution 

 Additionally, in pixel-level semantic segmentation tasks, local information around the prediction points 

has a significant impact on predicting categories.  
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To expand the receptive field without sacrificing resolution, a Hybrid Dilated Convolution (HDC) is used 

to enhance local information, addressing the issue of information loss when restoring the image to its original 

size in the decoding module through upsampling and pixel addition, as shown in Fig. 7. Finally, after 

concatenating the channels of multiple branches, the original feature maps and the residuals extracted from 

each branch are fused in the form of skip connections to restore the original channel count. Due to the lack of 

correlation in feature dimensions caused by channel branches, it is necessary to shuffle the channel order of 

feature maps before entering a feature extraction module to enhance the global correlation of feature maps. 

 

Fig. 7 - Dilation convolution with 3×3 kernel size 

Multi-scale convolution decoder 
 Multi-scale convolution algorithm is a common method to extract different layers of semantic 

information. The output of the encoder is convoluted in three different scales, for which 7×7, 5×5, and 3×3 

convolution kernels were selected, respectively. The convolution kernel with large scale can capture the 

association between far away pixels, while the convolution kernel with small scale can extract the detail of near 

small targets. It is easier to analyze near machine and distant sky and farmland by combining convolution 

kernels of different sizes. Therefore, the size of the feature map is reduced in the initial process. As shown in 

Fig. 8, because the semantic segmentation task requires that the output size should be the same as the original 

image, it is necessary to design an upsample to recover the feature map. Subsequently, the same size features 

are fused by convolution with 1×1 convolution kernel. After 3 times of upsampling and 2 times of feature fusion, 

the output is the same size as the input feature map and semantic channel. 
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Fig. 8 - Structure of multi-scale convolution 

Effective region segmentation based on distance information 

 Distance estimation and semantic segmentation are both of scene perception. Distance estimation 

describes the geometric relationship in space, while semantic information represents the entity meaning of 

different background of the scene. Therefore, the distance information is introduced into the decode module 

as the auxiliary information, both of which share context information to the purpose of segmenting effective 

farmland. The decoder consists of four branches, two of which are multiscale convolution module and normal 

convolution module. Except for the three semantic channels mentioned in the previous section, a distance 

channel is added.  
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After point multiplication, the output of the two modules is divided into semantic and distance parts. 

The other two branches complete global average pooling (GAP), convolution with 1×1 and up sampling in turn 

to retain the uniqueness of the two types of information. Finally, the semantic prediction results and distance 

classification results are obtained by adding the outputs of the two kinds of information. 

 
RESULTS 

Case Analysis Impact of Residual Networks on Training Accuracy 

 To address the increased difficulty in training deep networks, residual networks were introduced in 

this model to enhance the fitting capability of high-dimensional models, and improvements were made to the 

convolutional kernels and residual branches of the residual network, resulting in a three-fold reduction in the 

number of parameters. To verify the impact of introducing residual modules and improved residual modules 

on training accuracy, this section compares the training iteration accuracy curves for different models to 

highlight the advantages of residual modules. The experimental results are shown in Fig. 9. It can be observed 

from the curve variations that the model without residual modules exhibits lower training speed and iteration 

accuracy compared to the results with the introduction of residual modules. Additionally, the improved residual 

module, due to its significantly reduced number of parameters, has slightly lower iteration speed than the 

unimproved model. However, the final training accuracy of the model is essentially consistent with the 

unimproved version. Therefore, introducing residual networks in the model optimizes the training process and, 

after improvements, does not affect the model's training accuracy. 

 

Fig. 9 - Iterative accuracy curve of sample training 

Classification Results of Captured Image Samples 

 Among various semantic segmentation methods, this paper selected four representative networks 

for comparison: UNet with an encoder-decoder structure, RefineNet with residual optimization, PSPNet with 

pyramid pooling, and the prevailing DeepLabv3+. The model was trained using 1000 images, with 200 for 

validation and 500 for testing. From the classification results of the test images, it can be seen that the overall 

accuracy of all methods exceeds 90%, with this paper's method achieving the highest accuracy at 93%. The 

results clearly show that the three methods that utilize multi-scale convolution outperform UNet and RefineNet. 

This paper's method demonstrates greater accuracy in classifying C3 and C4, indicating that the model is more 

sensitive to pixels labeled as farmland. DeepLabv3+ performs well in all categories, particularly excelling in 

C2, suggesting that this model provides more accurate predictions for individual pixels. 

Table 1 
Results (%) of image classification 

Number Model C1 C2 C3 C4 Accuracy 

1 UNet 90.24 82.89 93.61 91.30 90.24 

2 RefineNet 89.43 85.52 91.48 92.75 90.62 

3 PSPNet 91.05 86.83 94.68 92.75 91.81 

4 DeepLabv3+ 93.49 92.10 92.55 92.27 92.63 

5 Ours 92.68 89.47 94.68 93.71 93.00 
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 The confusion matrix for this paper's method in Fig. 10 shows that C2 is easily misclassified as C3, 

indicating that some machinery pixels are incorrectly identified as farmland, resulting in the classification 

results of C3 exceeding the number of samples. However, there are no misclassifications between C3 and C4, 

primarily because most images that meet the requirements for C4 arise due to different seed machine models, 

causing the camera to capture both the sky and machinery within the normal monitoring angle. The proportions 

of both scenarios are less than the requirements for C1 and C2. Consequently, this paper's method not only 

achieves higher accuracy, while providing a more precise representation of the C4 category, which is the focus 

of this paper, effectively addressing the image classification issue. 

 

 

Fig. 10 - Confusion Matrix of our method 

 

Background Segmentation and Areas to be Inspected Division Results 

 The background segmentation and areas to be inspected division results are presented in Table 2. 

Two sample images from classes C1 and C4, each containing three different types of plots, were selected for 

quantitative analysis of the model's performance. The C1 image was captured on a cloudy afternoon, while 

the C4 image was captured on a sunny morning. From the experimental results, it can be observed that the 

model proposed in this paper performed well in terms of total accuracy, intersection over union (IoU), and the 

number of parameters used. Particularly, compared to DeepLabv3+, one of the best-performing semantic 

segmentation models, although it did not have an advantage in single-pixel prediction accuracy, it achieved a 

roughly 20-fold reduction in model parameters, and achieved the best results in the segmentation of farmland 

areas to be inspected, with an accuracy of 85.37%. This is due to the residual modules maintaining high feature 

extraction capability even with reduced parameters, the entire encoder module exhibits higher encoding 

efficiency. Additionally, it indicates that the decoder, which combines multi-scale convolution and attention 

mechanisms, effectively highlights distance features. In the context of areas to be inspected division, it 

outperforms other semantic segmentation models significantly. Therefore, this method is the most suitable for 

the requirements of farmland areas to be inspected division. 

Table 2 
Results (%) of segmentation 

Background Categories 
and Evaluation Methods 

UNet RefineNet PSPNet DeepLabv3+ Ours 

Sky 92.24 94.54 94.46 96.24 94.26 

Machine 80.26 82.64 85.41 86.29 86.37 

Fram 77.50 77.12 74.95 88.10 86.34 

Areas to be Inspected 63.24 69.34 72.24 73.31 85.37 

Total Accuracy 76.04 86.61 85.26 96.02 94.54 

IoU 73.42 80.45 79.79 83.25 84.96 

Model Parameters(M) 7.76 14.35 37.30 41.00 2.10 
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Visualization of Farmland Background Segmentation Results 

 The visualization of background segmentation results for C1 samples is shown in Figure 10. 

Comparing the ground truth and predicted results for various methods in Fig. 11, it can be observed that most 

algorithms accurately capture the boundary between the sky and farmland in the scene images. However, 

UNet exhibits confusion in boundary distinction, as machinery with darker colors tends to be confused with the 

surrounding farmland, resulting in poorer segmentation results. RefineNet produces segmentation regions that 

are similar to the center region of the ground truth, but with overly smooth boundaries. PSPNet's segmentation 

is influenced by the category with more pixels, causing the center region to shift downward. However, it has a 

clear boundary. DeepLabv3+ demonstrates good segmentation results and is visually similar to this paper's 

method, but the boundaries are more distinct. This paper's method achieves more accurate segmentation of 

the central farmland region, benefiting from the inclusion of distance information in the network, which 

enhances the spatial characteristics of the farmland category. This ensures that the farmland area is not 

misclassified as other categories in the entire image, aligning better with the task requirements of this paper. 

 

Fig. 11 - Farmland background segmentation image 

Visualization of Areas to be Inspected Division Results 

 The visualization of areas to be inspected division results for C4 samples is shown in Fig. 12.  

 

Fig. 12 - Effective region segmentation image 

 The results show that, in terms of background segmentation, both methods still exhibit no significant 

differences. This paper's method focuses more on the central location, while DeepLabv3+ shows more distinct 

boundaries. In the smoothed distance prediction map, DeepLabv3+ exhibits a more pronounced overflow 

phenomenon beyond the 10-meter level boundary. It also misclassifies a 5-meter area in the bottom left corner. 

The 50-meter boundary line aligns almost with the skyline, failing to separate farmland at a distance. This 

paper's method provides a clearer separation of areas for each level, without misclassification due to the lower 

proportion of samples. The position of the 50-meter level boundary is closer to the level map, allowing for 

better differentiation of distant information.  
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 This paper uses the 15-meter level line as the boundary for areas to be inspected and obtains the 

division map of farmland areas to be inspected. From the map, it is evident that this paper's method produces 

a more accurate division of areas to be inspected. This is attributed to the decoding module, which includes 

both multi-scale convolution branches and a separate distance branch, allowing for better resolution of 

distance information during the division of areas to be inspected. 

 

Experimental effect of straw cover detection 

 For the straw target detection task, the average deviation of various image regions after segmentation 

is generally more balanced and better than the results before segmentation. This is because after the division 

of the test area, there is no interference from the sky background and distant farmland in the sample image, 

making the test sample image closer to the standard image. However, in undivided image samples, the higher 

the camera angle, the greater the proportion of sky background in the image. In the white balance processing, 

the sky with a color closer to white replaces straw as the benchmark for color correction, rendering the color 

perception module for straw in the model ineffective. Therefore, without dividing the inspection area, when a 

large amount of straw is covered in the field, an angle that is too high will lead to a higher straw coverage rate, 

while when there is less straw covered, it will result in a lower straw coverage rate. 

Table 3 
Results of before and after effective region segmentation 

Camera Angle 
Before region segmentation After region segmentation 

Excessive straw Fewer straw Excessive straw Fewer straw 

Normal 0.974 1.062 0.974 1.062 

Slightly high 1.095 0.892 0.965 1.054 

Too high 1.134 0.851 0.963 1.087 

Average Deviation 0.096 0.05 

 

CONCLUSIONS 

 (1) A novel approach for image classification and division of farmland areas to be inspected based on 

semantic segmentation is proposed. This method combines encoder-decoder structures, residual units, multi-

scale convolution, and attention mechanisms. It classifies individual pixels in onboard captured images using 

semantic analysis, calculates the pixel proportions of various scene categories, and determines the image 

state. At the same time, it incorporates distance information into the segmentation of farmland areas to be 

inspected, making it possible to use a large number of images in the "to-be-processed" state as the calculation 

basis for quantitative analysis of straw returning. 

 (2) Experimental results indicate that, for onboard captured samples in various farmland scenes, the 

method proposed in this paper, based on semantic segmentation, achieves an overall sample classification 

accuracy of 93% for straw returning image classification and farmland areas to be inspected division, a 

background segmentation accuracy of 94.54%, and an areas to be inspected division accuracy of 85.37%. 

This method outperforms various mainstream semantic segmentation methods in straw monitoring 

applications, providing technical support for straw returning data processing and quantitative calculations. 

 (3) Compared with the results, it has been proven that the method proposed in this paper performs 

better in segmenting farmland in background categories and has more accurate spatial positions for vehicle 

captured samples in different agricultural scenes. This method integrates distance information to divide the 

image waiting area, which enables a large number of pending state images to serve as the calculation basis 

for quantitative analysis of straw returning to the field, effectively improving the application efficiency of straw 

monitoring images 
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