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ABSTRACT  

This study mainly investigates the feasibility of monitoring and estimating the RCC (Relative Chlorophyll 

Content) and the LAI (Leaf Area Index) of sorghum by coupling integrated learning model with UAV 

multispectral image, clarifies the quantitative relationship between RCC and LAI of sorghum and the vegetation 

index based on different spatial resolutions, and constructs a Monitoring and prediction model for the RCC and 

the LAI of sorghum based on the UAV multispectral image and the vegetation index at different spatial 

resolutions. The model constructed based on integrated learning, and using the stacking approach had good 

prediction accuracies at three spatial resolutions, with the stacking model predicting R2=0.87, MAE=18.27, and 

RMSE=22.23 for the RCC at spatial resolution of 0.017 m; R2=0.86, MAE=17.38, and RMSE=23.21 for RCC 

at spatial resolution of 0.024 m; R2=0.80, MAE=18.62, and RMSE=24.12 for RCC at spatial resolution of 0.030 

m; R2=0.93, MAE=0.34, and RMSE=0.37 for LAI at spatial resolution of 0.017 m; and R2=0.89, MAE=0.44, 

and RMSE=0.55 for LAI at spatial resolution of 0.024 m. The model established by combining the vegetation 

index and integrated learning can quickly and accurately monitor and predict RCC and LAI of sorghum, which 

provides a scientific methodology and theoretical basis for scientific monitoring and predicting RCC and LAI of 

sorghum in the field. 

 

摘要 

本研究主要探讨了将集成学习模型与无人机多光谱影像耦合，监测和估算高粱叶绿素相对含量和叶面积指数的

可行性，明确了基于不同空间分辨率的高粱叶绿素相对含量和叶面积指数与植被指数之间的定量关系，构建了

基于无人机多光谱影像和植被指数的不同空间分辨率高粱叶绿素相对含量和叶面积指数的预测模型。基于集成

学习和堆叠方法构建的预测模型在三种空间分辨率下均具有良好的预测精度，其中堆叠模型在空间分辨率为 

0.017m 时预测叶绿素相对含量的 R2=0.87，MAE=18.27，RMSE=22.23；在空间分辨率为 0.024m 时预测叶

绿素相对含量的 R2=0.86，MAE=17.38，RMSE=23.21；空间分辨率为 0.030 m 时叶绿素相对含量的 R2=0.80，

MAE=18.62，RMSE=24.12；空间分辨率为 0.017m 时叶面积指数的 R2=0.93，MAE=0.34，RMSE=0.37；空

间分辨率为 0.024m 时叶面积指数的 R2=0.89，MAE=0.44，RMSE=0.55。植被指数与集成学习相结合而建立

的模型能够快速且准确地监测和预测高粱的叶绿素相对含量和叶面积指数，为科学监测、预测田间高粱的叶绿

素相对含量和叶面积指数提供了科学的方法和理论依据。 

 

INTRODUCTION 

 Sorghum [Sorghum bicolor (L.) Moench] is the fifth largest cereal crop in the world. It has a long history 

of cultivation in China, with high and stable yields and other characteristics, and has a unique drought-resistant, 

waterlogging-resistant, saline-resistant, barren, and other resistance to adversity, in the plains, hills, 

floodplains, saline and alkaline land. It can be planted with a variety of uses, such as food, brewing, feeding, 

energy, silage, etc., and the potential development of sorghum is huge. 

 The chlorophyll content is an important parameter to consider in crop growth. It has a direct relationship 

with the final yield, which can effectively reflect the growth status and nutritional status of crops (Pan et al., 

2023). Therefore, rapid and accurate monitoring of the chlorophyll content of crops can provide a timely 

understanding of the crop growth status and can be used to make a scientific prediction of the final yield of 
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crops (Berjon et al., 2022). LAI is an important physiological parameter reflecting the monitoring of crop 

phenotype (Liu et al., 2012). The vegetation index obtained by remote sensing technology for the calculation 

of the band has a strong correlation with the LAI; the use of remote sensing technology can be used in small 

and medium-sized areas of the crop LAI prediction, to provide a strong support for agricultural management 

(Hunt et al., 2008). The application of drones in crop monitoring is a hot spot in the current field of agricultural 

science and technology. With the rapid development of UAV technology, its application in precision agriculture 

is more and more extensive, especially in crop growth monitoring and management. UAV multispectral 

technology has a large number of applications in crop monitoring by applying the advantages of flexibility, 

simple operation, and ease of use (Tavakoli et al., 2014). 

 Guo et al. found that the prediction effect of the prediction model established based on the support 

vector machine-based prediction model has the best prediction effect and also helps to retrieve SPAD values 

based on spectral and texture indices extracted from multispectral images using machine learning methods 

(Guo et al., 2022). Sudu B et al. inverted summer maize SPAD values using UAV hyperspectral data based 

on multiple machine learning algorithms, and the results showed that UAV hyperspectral image data can be 

used to predict maize growth information and that machine learning-based prediction models can quickly and 

non-destructively predict maize SPAD values (Sudu et al., 2022). Zhang et al. used an unmanned collection 

of hyperspectral images of winter wheat and multiple machine-learning models based on different algorithms 

to train an LAI inversion model (Zhang et al., 2021). That shows UAV monitoring technology can accurately 

measure chlorophyll content and leaf area of field crops on a large scale and with high throughput, so effective 

monitoring of field sorghum can be realized by the means mentioned above.  
However, most of the studies on growth monitoring and yield prediction of crops use vegetation indices, 

texture, and spectral information, but due to the differences in plant species, varieties, fertility periods, and 

research methods, the forms and parameters of the constructed models are different, which results in the 

conclusions obtained from a single experiment being often not universal (Tunca et al., 2018). The research on 

monitoring and prediction of sorghum-based on RGB images of drones has also been rarely reported, and 

fewer studies have been carried out on the optimal spatial resolution for monitoring. Few studies have been 

reported on the monitoring and predicting sorghum based on RGB images from UAVs, and fewer studies have 

been conducted on the optimal spatial resolution for monitoring. Because of this, this study, based on previous 

studies, with the advantage of UAV in variable spatial resolution, attempts to obtain multispectral images by 

UAV and combine them with vegetation indices under different spatial resolutions by using machine learning 

to build a model and combine them with the experimental data related to RCC and LAI of sorghum obtained 

during the same period to realize the prediction of important indices of sorghum growth at the field scale. By 

comparing the differences in generalization ability and prediction accuracy among models, the best prediction 

model is identified to provide new theoretical support and technical means for data collection, production 

management, and yield estimation in sorghum growth monitoring. 
 

MATERIALS AND METHODS 

Test Material and Test Site 

 The test sorghum variety is JINZA No.22. The test site is located in Wujiabao Village, Taigu County, 

Jinzhong City, Shanxi Province, China. The region (elevation 800 m, longitude 112° 30’ 51’’ E, latitude 37° 26’ 

41’’ N) has a temperate continental monsoon climate, with high temperature and rain in summer, cold and dry 

in winter, and four distinct seasons, with an altitude of about 795~805 m above sea level and an average 

annual frost-free period of 160-190 days. The average annual temperature is 10.6℃, the annual precipitation 

is 400 mm-600 mm, the main precipitation is concentrated in July-August, and the average annual sunshine 

is 1810 hours-2100 hours, which is suitable for the growth of sorghum, one season a year. The experiment 

was sown by manual spot sowing, with sowing row spacing of 0.3 m and plant spacing of 0.2 m. The sowing 

time was April 25, 2021, and the harvest was made on October 13, 2021, and the test was carried out by 

selecting the stage of pulling out, tasseling, and ripening of sorghum, and the conventional field management 

such as watering, fertilizer, and spraying of herbicides were carried out at appropriate time according to the 

experience, to prevent the interference of its cause. 

Data Acquisition and Processing 

 In this study, a multispectral camera modeled as MicaSense RedEdge-MX is used, which has five spectral 

bands, namely, blue, green, red, red-edge, and near-infrared. The device is mounted on the 4-axis UAV 

platform of the DJI Phantom 4 Pro to collect multispectral images. The system includes a flight control system, 
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power supply system, stabilizing gimbal, remote control, display, etc. The image data are collected when the 

light intensity is moderate and the radiation is stable to ensure the accuracy of the collected image data. The 

multispectral sensors are calibrated before the start of the flight to ensure the accuracy of the multispectral 

image calibration. The RCC of the tested sorghums was determined using a hand-held portable chlorophyll 

meter (Instrument model: CM 1000, which has a range of values from 0-999) for chlorophyll determination. 

Four target sorghum plants were selected, and the RCC values of the top two fully expanded leaves were 

measured: a total of three parts of the leaf such as the leaf base, leaf middle, and leaf tip were measured, and 

a leaf was measured at least three times. Finally, all the measurements on the same leaf were averaged and 

taken as the RCC of the plant. The LAI of the tested sorghums was determined using a handheld portable leaf 

area meter (instrument model: LAI-2200C) using the modified LAI method.  

The measurement of the relevant data was carried out simultaneously with the acquisition of 

multispectral photos by UAV to ensure the consistency of the collected data. Meanwhile, the UAV data 

measurements were carried out in a windless and cloudless period with suitable light to ensure the accuracy 

of the collected data. The valid data obtained during the experiment were divided into a training set and a 

validation set, in which the training set accounted for 70% and the validation set accounted for 30%. The 

processing and analysis of the data was done based on Python 3.6. The processing of the multispectral images 

acquired by the UAV was done through Agisoft PhotoScan and ArcGIS. 

 
Fig. 1 - Multispectral images of unmanned aerial vehicles in different frequency bands of sorghum 

 

Vegetation Indices Selection and Model Evaluation 

 Healthy green vegetation in the blue and red light band shows absorption, while in the green light and 

near-infrared band has a strong reflection. Hence, the vegetation index is the use of green vegetation in 

different bands of different characteristics, through the sensor obtained by the combination of different bands 

of information, to achieve the purpose of enhancing the vegetation information. It is essentially a 

comprehensive consideration of a variety of spectral information, and its certain mathematical transformations 

so that it enhances the vegetation information at the same time and minimizes the non-vegetation and other 

noise. There are hundreds of vegetation indices proposed in related research fields, and in this study, 11 

vegetation indices that showed a high correlation with the RCC and LAI of the test species were selected. 

Regarding the evaluation of the model prediction results, the coefficient of determination R2, Mean 

Absolute Error (MAE), and Root Mean Square Error (RMSE) are used in this study. 

 

RESULTS 

Analysis of Variations in RCC and LAI at Different Flight Altitudes 

 In this section, data on variations in RCC and LAI obtained through multispectral imaging technology 

using UAVs at different flight altitudes are presented. Measuring RCC and LAI provides essential insights into 

the growth status and health of plants. Changes in these indicators can help farmers promptly identify issues 

such as nutrient deficiencies, pest infestations, or diseases, enabling them to take appropriate measures to 

protect plant health and promote high-quality crop yields. 
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Fig. 2 - RCC and LAI spectra at different spatial resolutions 

 

 When the UAV flight altitude is 25 meters, the corresponding spatial resolution is 0.017 meters. At this 

spatial resolution, it was observed that the measured RCC and LAI values were 0.9785 and 2.9284, 

respectively, indicating that the health status of the plants is optimal at this height. As the flight altitude 

increases to 35 meters and 45 meters, the RCC and LAI values gradually decline, reaching 0.9771 and 2.9238 

(at 35 meters), and 0.9745 and 2.9152 (at 45 meters), respectively. This trend suggests that higher flight 

altitudes may reduce the ability to capture vegetation characteristics, thereby affecting the accuracy of the 

monitoring data. 

 As shown in the figure 2, the variations in RCC and LAI measured at different flight altitudes are 

illustrated. The figure clearly indicates that RCC and LAI values are highest at a flight altitude of 25 meters, 

while both indicators show a declining trend as the flight altitude increases. 

 The reason for this variation may be attributed to increased light scattering and reflection at higher flight 

altitudes, which can affect the ability to capture vegetation characteristics. Additionally, higher altitudes may 

reduce the resolution of the sensors, making it more challenging to monitor subtle changes. Therefore, 

selecting an appropriate flight altitude and spatial resolution is crucial for optimizing vegetation monitoring 

effectiveness. 

 

Construction and Evaluation of a Prediction Model for RCC 

 Measuring the RCC gives an idea of the growth status, nutritional status, and health of the plant. This is 

important for the timely detection of problems such as plant diseases, pests, or nutritional deficiencies, and by 

regularly monitoring chlorophyll content, farmers can take appropriate measures to protect plant health and 

improve crop yield and quality (Zhao et al., 2023). Through the use of tools such as remote sensing technology 

or portable chlorophyll meters, chlorophyll content can be monitored in real-time over large areas of farmland, 

allowing early detection of poor plant growth or disease problems. At the same time, based on trends in 

chlorophyll content, crop yields can be predicted and measures can be taken to improve yields and stabilize 

agricultural production. 

The corresponding spatial resolution at this flight altitude is 0.017 m with the flying altitude of 35 m. At 

this spatial resolution, the optimal parameter combinations are obtained for each model as shown in Table 1. 
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Table 1 

The parameter information of independent machine learning models at spatial resolution of 0.017 m of RCC 

Model  Para1  Value1 Para2 Value2 Para3  Value3 

Ridge Alpha 100     

Lasso Alpha 10 Max_iter 20   

SVM C 0.1 Kernel Linear   

MLP Activation Tanh Hidden_layer_sizes (25, 25, 25, 
25) 

solver lbfgs 

KNN Algorithm Kd_tree Leaf_size 1 n_neighbors 9 

RF Min_samples_leaf 8 Min_samples_split 0.1 n_estimators 46 

GBDT learning_rate 0.01 Loss ls n_estimators 51 

 
The above 7 basic models are used as the base model and the linear regression algorithm is used as 

the stacking meta-model. After synthesizing the above independent machine learning models and using the 

same input data to get the prediction results obtained by the stacking model, a 1:1 comparison graph is 

constructed after normalizing the stacking model prediction results with a total of 8 sets of prediction results 

and actual values such as the prediction results of the aforementioned independent models, and the specific 

results are shown in Figure 3. 

 
Fig. 3 - The plot of predicted versus measured values for eight models at spatial resolution of 0.017 m of RCC 

 
At this spatial resolution, KNN and RF have the best prediction results among the seven independent 

machine learning models, with R2=0.78, MAE=20.56, and RMSE=28.55 for KNN, and R2=0.78, MAE=21.37, 

and RMSE=28.48 for RF. In contrast, the stacking model has R2=0.87, MAE=18.27, and RMSE=22.23, and 

its three evaluation indices are better than the KNN and RF models. Hence, the prediction results of the 

stacking model are better than the seven independent models. 

The corresponding spatial resolution at this flight altitude is 0.024 m with the flying altitude of 35 m. At 

this spatial resolution, the optimal parameter combinations are obtained for each model as shown in Table 2. 
 

Table 2 

The parameter information of independent machine learning models at spatial resolution of 0.024 m of RCC 

Model  Para1  Value1 Para2 Value2 Para3  Value3 

Ridge Alpha 0.1     

Lasso Alpha 0.001 Max_iter 210   

SVM C 100 Kernel Rbf   

MLP Activation Logistic Hidden_layer_sizes (50, 50) solver lbfgs 

KNN Algorithm Kd_tree Leaf_size 1 n_neighbors 4 

RF Min_samples_leaf 89 Min_samples_split 0.1 n_estimators 6 
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Model  Para1  Value1 Para2 Value2 Para3  Value3 

Ridge Alpha 0.1     

GBDT learning_rate 0.1 Loss lad n_estimators 51 

 
The above 7 basic models are used as the base model and the linear regression algorithm is used as 

the stacking meta-model. After synthesizing the above independent machine learning models and using the 

same input data to get the prediction results obtained by the stacking model, a 1:1 comparison graph is 

constructed after normalizing the stacking model prediction results with a total of 8 sets of prediction results 

and actual values such as the prediction results of the aforementioned independent models, and the specific 

results are shown in Figure 4. 

 
Fig. 4 - The plot of predicted versus measured values for eight models at spatial resolution of 0.024 m of RCC 

 
At this spatial resolution, Ridge has the best prediction results among the seven independent machine 

learning models, with R2=0.82, MAE=21.61, and RMSE=26.79; the stacking model has R2=0.86, MAE=17.38, 

and RMSE=23.21, and all the evaluation metrics are better than Ridge model, so the stacking model's 

prediction results are better than seven independent models. 

The corresponding spatial resolution at this flight altitude is 0.030 m with the flying altitude of 45 m. At 

this spatial resolution, the optimal parameter combinations is obtained for each model as shown in Table 3. 
 

Table 3 
The parameter information of independent machine learning models at spatial resolution of 0.030 m of RCC 

Model  Para1  Value1 Para2 Value2 Para3  Value3 

Ridge Alpha 50     

Lasso Alpha 10 Max_iter 10   

SVM C 1 Kernel Linear   

MLP Activation Tanh Hidden_layer_sizes (30, 30, 30) solver lbfgs 

KNN Algorithm Kd_tree Leaf_size 1 n_neighbors 9 

RF Min_samples_leaf 1 Min_samples_split 0.1 n_estimators 96 

GBDT learning_rate 0.1 Loss lad n_estimators 31 

 
The above 7 basic models are used as the base model and the linear regression algorithm is used as 

the stacking meta-model. After synthesizing the above independent machine learning models and using the 

same input data to get the prediction results obtained by the stacking model, a 1:1 comparison graph is 

constructed after normalizing the stacking model prediction results with a total of 8 sets of prediction results 

and actual values such as the prediction results of the aforementioned independent models, and the results 

are shown in Figure 5. 
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Fig. 5 - The plot of predicted versus measured values for eight models at spatial resolution of 0.030 m of RCC 

 
At this spatial resolution, MLP and KNN have the best prediction results among the seven independent 

machine learning models, with R2=0.73, MAE=22.25, and RMSE=28.08 for MLP, and R2=0.73, MAE=21.05, 

and RMSE=28.73 for KNN. In contrast, the stacking model has R2=0.80, MAE=18.62, and RMSE=24.12, and 

its three evaluation indices are better than the MLP and KNN models. Hence, the prediction results of the 

stacking model are better than the seven independent models. 

When the spatial resolution is 0.017 m, the KNN and RF models have the best prediction results, 

however, the stacking model's prediction results are better than the seven independent models with R2=0.87. 

When the spatial resolution is 0.024 m, the Ridge model has the best prediction results, and the stacking 

model's prediction results are better than the seven independent models with R2=0.86. When the spatial 

resolution is 0.030 m, the MLP, and the KNN model have the best prediction, but the stacking model's 

prediction is still better than that of the seven independent models, with R2=0.80. 

Construction and Evaluation of a Prediction Model for LAI 

The LAI is also an important indicator describing the vertical structure of vegetation, which reflects the 

amount of leaf area per unit surface area. By monitoring and analyzing changes in LAI, abnormal crop growth, 

malnutrition, or pest problems can be detected promptly and provide a scientific basis for agricultural 

management, such as fertilizer application, irrigation, and pest control, which can help to improve crop yield 

and quality, and  LAI can be rapidly acquired and monitored by remote sensing technology, providing important 

information for land use, forestry resource management, water resource management, and so on (Yamaguchi 

et al., 2023). The monitoring of LAI by remote sensing can realize the rapid assessment of vegetation growth 

status in large-scale areas and provide scientific support for decision-making on resource management and 

environmental protection. 

When the UAV flight altitude is 25 m, the spatial resolution of multispectral is 0.017 m. In this spatial 

resolution, 11 target vegetation indices are taken as inputs to 7 independent machine learning algorithm 

models, the models are trained on the training set, and the validation set data is used to validate and evaluate 

the obtained models, and the optimal parameter combinations of each model are shown in Table 4. 

Table 4 

The parameter information of independent machine learning models at spatial resolution of 0.017 m of LAI 

Model  Para1  Value1 Para2 Value2 Para3  Value3 

Ridge Alpha 0.1     

Lasso Alpha 0.001 Max_iter 20   

SVM C 5 Kernel Linear   

MLP Activation Identity Hidden_layer_sizes (30, 30, 30) solver adam 

KNN Algorithm Kd_tree Leaf_size 1 n_neighbors 4 

RF Min_samples_leaf 3 Min_samples_split 0.3 n_estimators 11 

GBDT learning_rate 0.1 Loss ls n_estimators 46 
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The above 7 basic models are used as base models and the linear regression algorithm is used as a 

stacking meta-model. After synthesizing the above independent machine learning models and using the same 

input data to get the prediction results obtained by the stacking model, a 1:1 comparison graph is constructed 

after normalizing a total of 8 sets of prediction results with the actual values such as the prediction results of 

the stacking model and the prediction results of the aforementioned independent models, the specific results 

are shown in Figure 6. 

 

 
Fig. 6 - The predicted versus measured values for eight prediction models at spatial resolution of 0.017 m of LAI 

 
 
At this spatial resolution, the best prediction among the seven independent machine learning models is 

the SVM model, which corresponds to R2=0.83, MAE=0.46, and RMSE=0.59. The stacking model has 

R2=0.93, MAE=0.34, and RMSE=0.37, and all the evaluation indices are better than those of the SVM model, 

so the stacking model's prediction results are better than seven independent models such as RF. 

When the UAV flight altitude is 35 m, the spatial resolution of multispectral is 0.024 m. In this spatial 

resolution, The optimal parameter combinations for each model obtained at this spatial resolution are shown 

in Table 5. 

Table 5 

The parameter information of independent machine learning models at spatial resolution of 0.024 m of LAI 

Model  Para1  Value1 Para2 Value2 Para3  Value3 

Ridge Alpha 50     

Lasso Alpha 0.5 Max_iter 50   

SVM C 10 Kernel Rbf   

MLP 
Activation Relu Hidden_layer_sizes (25, 25, 25, 

25) 
solver lbfgs 

KNN Algorithm Kd_tree Leaf_size 1 n_neighbors 1 

RF Min_samples_leaf 1 Min_samples_split 0.1 n_estimators 6 

GBDT learning_rate 1 Loss lad n_estimators 6 

 
 

Then the above 7 basic models are used as the base model and the linear regression algorithm is used 

as the stacking meta-model. After synthesizing the above independent machine learning models and using 

the same input data to get the prediction results obtained by the stacking model, a 1:1 comparison graph is 

constructed after normalizing the stacking model prediction results with a total of 8 sets of prediction results 

and actual values such as the prediction results of the aforementioned independent models, and the results 

are shown in Figure 7. 
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Fig. 7 - The predicted versus measured values for eight prediction models at spatial resolution of 0.024 m of LAI 

 
At this spatial resolution, MLP has the best prediction results among the seven independent machine 

learning models, with R2=0.81, MAE=0.42, and RMSE=0.71, the stacking model has R2=0.89, MAE=0.44, and 

RMSE=0.55, and all the evaluation metrics are superior to those of the MLP model so that the stacking model's 

prediction results were better than seven independent models such as MLP. 

When the spatial resolution is 0.017 m, the SVM model has the best prediction effect, but the stacking 

model has better prediction results than the seven independent models such as SVM, with R2=0.93. When the 

spatial resolution is 0.024 m, the MLP model has the best prediction effect, and the stacking model still has 

better prediction results than the seven independent models such as MLP, with R2=0.89. Unfortunately, not 

enough valid data were collected on the LAI of sorghum due to insufficient time at the spatial resolution of 0.030 m. 

It was found that the models constructed at higher spatial resolution have higher R2 values, lower MAE 

values, and lower RMSE values, indicating that increasing the resolution can improve the prediction accuracy 

of the models to some extent. Therefore, when conditions permit, lower flight altitude is considered to obtain 

higher spatial resolution and effectively improve the prediction model of RCC and LAI. Of course, the lower 

flight altitude, for a given monitoring area, represents the need to pay more monitoring time and slower 

monitoring speed, which needs to be measured according to the actual situation and trade-offs. 
 

CONCLUSIONS 

In previous studies, vegetation indices such as NDVI and EVI vegetation indices are mainly used to 

monitor crops in RCC and LAI prediction model (Tian & Min, 1998). Linear regression models or simple 

nonlinear regression models with simple spectral indices are usually used to monitor crop growth (Berger et 

al., 2020). However, because the spectral index varies greatly at different growth stages of crops, the 

monitoring accuracy and adaptability of the traditional methods need to be improved (Ramsanthosh et al., 

2021). Instead, this study used the vegetation index of plants, coupled with a stacked learning model, to go 

about exploring the optimal sorghum RCC and LAI prediction model at different spatial resolutions. Compared 

with the traditional, single machine learning model-based prediction method, the prediction model constructed 

based on integrated learning and using the stacking approach has higher prediction accuracy and better 

prediction results, to realize the rapid monitoring and prediction of sorghum growth in field environments 

(Ashcraft & Karra, 2021; Yahata et al., 2017). 

Although the prediction model constructed by combining the vegetation index with independent machine 

learning at different spatial resolutions can achieve high prediction accuracy, there are still some shortcomings 

in predicting and monitoring the values of RCC and LAI of sorghum. One of the challenges is that lower 

resolution results in a smaller amount of data obtained, as it requires less time to monitor the same area. This 

reduction in data volume affects both model construction and validation. Additionally, the parameter 

optimization method using grid search in this study is not sufficient, and a more dynamic update-based 

parameter optimization algorithm will be explored in future work. Furthermore, the unstable and unstructured 

environment of field crop survival, combined with the manual methods used to collect plant data, introduces a 

degree of subjectivity in data collection.  
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The study is also limited to a single species, with discontinuous observation times and a relatively small 

total sample size. These factors indicate that generalizing the conclusions of this study requires further 

exploration, testing, and research. 
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