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ABSTRACT 

In this study, a stacked machine learning algorithm was constructed with tomato organ biomass as the 

research object, taking the geometric morphology data of tomato organs as the variables, utilizing eight 

classical machine learning algorithms as the base-model, and applying the linear regression algorithm as the 

stacked meta-model. This algorithm was then utilized to establish a prediction model for tomato biomass at 

the organ scale, and the biomass models of tomato plant leaves and fruits at the organ scale were constructed. 

The model has R2=0.86, MAE=0.49, and RMSE=0.81 in predicting leaves, and R2=0.94, MAE=0.33, and 

RMSE=0.57 in predicting fruits. The model has practical applications in predicting tomato yield and supply, 

providing market information, and supporting agricultural investment decisions. It also helps to optimize 

agricultural production and management, guide industrial development and planning, and improve the 

efficiency and competitiveness of the agricultural sector. 

 

摘要 

本研究以番茄器官生物量为研究对象，将番茄器官的几何形态数据作为变量，利用八种经典机器学习算法作为

基础模型，并应用线性回归算法作为堆叠元模型，构建了一种堆叠式机器学习算法。然后利用此算法建立器官

尺度上的番茄生物量预测模型，并构建了器官尺度上番茄植株叶片和果实的生物量模型。该模型在预测叶片方

面的R2=0.86，MAE=0.49，RMSE=0.81；在预测果实方面的R2=0.94，MAE=0.33，RMSE=0.57。该模型在

预测番茄产量和供应、提供市场信息、支持农业投资决策等方面具有实际应用价值，还有助于优化农业生产和

管理，指导产业发展和规划，提高农业部门的效率和竞争力。 

 

INTRODUCTION 

 Tomato (Solanum lycopersicum L.) is one of the most important vegetable crops in the world, and it 

has become one of the largest vegetable crops in the world's cultivation area (Li, 2013). Some studies have 

shown that the dramatic changes in global climate in the 21st century will have a significant impact on 

biodiversity, which, to some extent, also indicates that the cultivation of high-yielding and stable crop varieties 

will face greater uncertainty and higher difficulty (Damtew, 2017). Therefore, it is necessary and important to 

obtain timely, rapid, and accurate information on crop growth and development and predict biomass. 

 Biomass is an important parameter for crop growth, which is directly related to the final yield, and the 

amount of biomass can effectively reflect the growth of crops (Colomina et al., 2014). Biomass modeling is the 

main method to estimate biomass, is an effective and relatively accurate investigation method (Wang et al., 

2008), and has become a hot area of biomass research, rapid and accurate monitoring of biomass can be a 

timely understanding of crop growth and yield prediction, which is of great significance to the production and 

management of agriculture (Chen et al., 2016). However, the traditional methods for determining biomass are 

not only time-consuming, and slow, with large errors and low efficiency, but also cause damage to the crop 

during the measurement process, making it difficult to realize the measurement of biomass rapidly (Liu et al., 

2021). 

 Domestic and international scholars have done a lot of research on biomass prediction modeling (Liu 

et al., 2023). Many scholars have used new science and technology, such as machine learning, in the 

production management of agriculture, to effectively realize the prediction and estimation of phenotypic 

indexes such as vegetation index, above-ground biomass, and chlorophyll content of crops with the help of 

new technology and new means, such as machine learning and artificial intelligence (Fu et al., 2021).  Wang 
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et al., (2024) constructed a biomass prediction model for larch in Xiaoxinganling using diameter at breast 

height (D) and tree height (H) as variables and found that the machine learning algorithm could predict biomass 

better than the traditional algorithm. However, most of the current studies have focused on biomass prediction 

at the individual scale, and not many prediction models have been developed at the organ scale. Moreover, it 

has been shown that there is a significant correlation between the morphological data of tomato organs and 

the amount of material produced by them (Dong et al., 2007). Therefore, in this study, a tomato organ biomass 

prediction model was developed at the organ scale based on machine learning techniques, taking tomato 

organ biomass as output parameters and tomato organ geometric morphology data as the input variables, to 

provide fast biomass prediction at the organ scale for tomato production, research, and breeding, to provide a 

theoretical basis and reference basis for tomato variety selection, cultivation management and production 

monitoring, and to provide experimental basis and scientific basis for tomato yield prediction and cost input. 

 

MATERIALS AND METHODS 

Test Material and Test Site 

 The test tomato variety is YOUCUI8850, which is an infinite-growth large-fruited variety of tomato, a 

variety of medium-early maturity; the fruit is nearly round, turns red and bright in colour after maturity, has high 

hardness, a moderate size, and continuous fruit-setting ability; the weight of a single fruit is 190 g - 260 g; 

storage and transportation resistance, long shelf-life; resistance to the tomato yellowing curculio virus, blight, 

and tobacco mosaic virus, etc. The developmental stages of tomato fruit, specifically the green maturity and 

complete ripening phases, are shown in Fig. 1 and Fig. 2. 

 
Fig. 1 - Green maturity of tomato fruits 

 

 
Fig. 2 - Complete ripening of tomato fruits 
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 The test site is located in Datong City, Shanxi Province, Yanggao County, West Lijia Soap Village, 

Tomato Industry Research Institute test base (longitude 113°40′42″, latitude 40°09′50″, elevation 1125 m) to 

carry out the test site for the meso-thermal temperate continental semiarid monsoon climate, the average 

annual temperature of 7.1oC, the temperature difference between day and night is obvious; the average annual 

number of hours of sunshine is 2,691.4 h; the average annual precipitation is 364.9mm; the annual frost-free 

period is 161 days; the soil is mainly loamy and of medium fertility. The test site is shown in Fig. 3. 

 
Fig. 3 - Visualization of test site locations 

 

 The experimental greenhouse was located in the north-south direction, with a length of 70 m, a span 

of 12 m, and a ridge height of 8.6 m. The planting ridge was in the shape of a trapezoid, with a length of 10 m, 

a width of 110 cm at the base of the ridge, a width of 60 cm at the surface of the ridge, a height of 40 cm, and 

a spacing of 50 cm between neighbouring ridges; the ridge was planted with two rows, two rows staggered, 

with a spacing of 50 cm between the rows and a spacing of 40 cm between the plants. The layout of tomato 

planting inside the greenhouse is shown in Fig. 4. 

 

 
Fig. 4 - Inside the greenhouse tomato planting scene 

 

 The experiment started on May 15, 2023 when the tomato seedlings were planted and continued till 

August 13, 2023. The trial was managed routinely during the trial period. 
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 The experimental environment used in this study: CPU: Intel(R) Core (TM) i7-13700K@3.40GHZ, 

64GB of running memory, Operating System: Windows 11, GPU: NVIDIA GeForce RTX 4080 with 16GB video 

memory. The machine learning framework is scikit-learn 1.0.2, and the programming language is Python 3.7.0. 

Data Acquisition and Processing 

 One week after planting, six YOUCUI8850 plants with consistent growth were selected for observation. 

Additionally, six plants with similar growth potential and morphology were selected for harvesting at intervals 

of 10-15 days, and a total of seven harvests were conducted. At each harvest, the selected plants were 

carefully removed from the soil and quickly brought back to the laboratory, where each of the aboveground 

organs of the tomato was individually sectioned from the base to the apical growth point. Then the length and 

width of each leaf, the transverse and longitudinal diameter of each fruit were quickly measured, after which 

each organ was placed in a kraft paper bag into the oven to kill the green at 105° for 30 minutes, and then 

dried at a constant temperature of 80°C, until the mass was constant. Then, the biomass (dry mass) of each 

organ was measured (Cheng et al., 2022). 

  Geometric morphometric data on tomato leaves and fruits from each harvest were recorded and they 

were numbered according to their position on the plant. Fig. 5 and Fig. 6 show the geometrical morphometric 

data of the leaves at different positions at each harvest. It can be seen that the length and width of the leaves 

at different positions showed an increasing trend with the growth time. Fig. 7 and Fig. 8 show the geometrical 

morphometric data of the fruits at different positions at each harvest, and it can be seen that the transverse 

and longitudinal diameters of the fruits at different positions show the same trend of growth with the change in 

growth time. Moreover, the average leaves and fruits biomass per plant at each harvest and the average plant 

height and stem thickness were recorded.  As shown in Fig. 9, leaf biomass, fruit biomass, plant height, and 

stem thickness increased over time, indicating that the plants were maturing as they grew. 

 

 
Fig. 5 - The data on leaf length per harvest 

 

 
Fig. 6 - The data on leaf width per harvest 
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Fig. 7 - The data on fruit transverse diameter per harvest 

 

 
Fig. 8 - The data on fruit longitudinal diameter per harvest 

 

 
Fig. 9 - Average leaf and fruit biomass per plant and plant height and width per harvest 

Model Selection 

 In this study, classical machine learning algorithms were used to predict the biomass of tomato organs. 

Among these algorithms, the generalized linear regression supported Ridge Regression (Ridge), Lasso 

regression algorithm (Least absolute shrinkage and selection operator, Lasso), and ElasticNet (EN) were used, 

Support Vector Machine algorithm (SVM), Multi-Layer perceptron (MLP), K-NearestNeighbor (KNN), Random 

Forest (RF) algorithm belonging to bagging in integrated learning, and Gradient Boosting Decision Tree 

(GBDT) algorithm which belongs to boosting in integrated learning. In addition, the above algorithmic models 

were also stacked based on the stacking mode of integrated learning to construct a model to realize the 

prediction of tomato biomass. 

 In the field of machine learning, the choice of algorithms and the tuning of parameters have always 

been headache-inducing challenges. Although there are many algorithms available, no algorithm is foolproof. 

As technology continues to evolve, new techniques have emerged that can provide some help in algorithm 

selection and parameter tuning, and one of the most popular techniques is Stacking. 
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 Stacking is a technique used to enhance the performance of machine learning models (Maddaloni et al, 

2022; Jahnavi et al., 2023). The technique generates final predictions by combining predictions from different 

algorithms. This approach can help to solve many machine learning problems, especially when a single 

algorithm is not sufficient to solve the problem. Stacking usually consists of two steps: the first step is to use 

multiple base models to generate predictions, and the second step is to use another model to integrate these 

predictions and generate the final prediction. The basic process of its implementation is generally divided into 

two steps. The first step is to generate the prediction results. In the first step, multiple base models were used 

to generate prediction results. For each base model, the training data are split into two parts: one part is used 

to train the model and the other part is used to generate the prediction results. Different models such as 

decision trees, random forests, support vector machines, multilayer perceptual machines, etc. can be used. 

Each model generates a prediction result; the second step integrates the prediction results. In the second step, 

another model is used to integrate these predictions and generate the final prediction results. Algorithms such 

as linear regression, logistic regression, random forests, support vector machines, neural networks, etc. can 

be used to accomplish this step. One thing that must be noted here is that the model in the second step must 

use the predictions from the first step as input. This will ensure the consistency of the entire Stacking process. 

 

RESULTS 

Result Evaluation 

 In this study, R2, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) were used to 

evaluate the model. The closer the value of R2 is to 1, the better the interpretability and performance of the 

model. The smaller the MAE and RMSE values, the higher the consistency between the predicted values and 

the actual values, thus proving the more accurate prediction results of the model (Wang et al., 2022). 

 

Construction and Evaluation of Tomato Leaf Biomass Prediction Model 

 The leaf is an important organ of the plant, which is the main tissue for photosynthesis, absorbing energy 

from sunlight through chlorophyll and other photosynthetic pigments and converting it into chemical energy to 

support plant growth and development. Leaves also absorb water from the plant body from the ground to the 

atmosphere through transpiration, facilitating water and nutrient uptake and transport, and regulating the 

temperature of the plant body. 

By quickly realizing the prediction of leaf biomass, it is possible to understand the total amount and 

trends of leaves in different plant communities and ecosystems. This helps to assess the dynamic distribution 

and spatial pattern of plant biomass and reveals the structure and function of ecosystems, thus providing 

important information for ecological studies. 

After all the data obtained from the seven experiments were divided into a training set and a test set 

according to the different organs in the ratio of 75% and 25%, then a model was constructed with the geometric 

morphology data of leaves (length and width of leaves) and its corresponding biomass data and the geometric 

morphology data were uses as inputs to the model to predict its corresponding biomass. The eight classical 

machine learning models (Ridge, Lasso, EN, SVM, MLP, KNN, RF, and GBDT), with their corresponding 

hyperparameters are shown in Table1. 

 
Table 1 

 

Hyperparameters of the 8 base models when the input feature of the model is the geometric shape of the leaves 

Model Para1 Value1 Para2 Value2 Para3 Value3 

Ridge alpha 10     

Lasso alpha 0.01 max_iter 10   

EN alpha 0.1 l1_ratio 0.9   

SVM C 1 kernel rbf   

MLP activation 
relu hidden_layer_sizes (25,25, 

25,25) 
solver adam 

KNN algorithm ball_tree leaf_size 3 n_neighbors 9 

RF min_samples_leaf 6 min_samples_split 0.1 n_estimators 6 

GBDT learning_rate 0.1 loss lad n_estimators 96 
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 The above 8 base models are taken as base-model and linear regression algorithm is used as stacking 

meta-model. The above 8 classical machine learning models were integrated, using common input data, and 

9 different sets of predicted data were obtained, after normalizing the predicted values with the actual values 

to construct a 1:1 comparison graph, the specific results are shown in Fig. 10 and Fig. 11.  

 
Fig. 10 - The 1:1 plot of predicted versus actual values for the nine models when the input feature  

of the model is the geometry of the blade 
 

 

 
Fig. 11 - Comparison of the evaluation metrics of the nine models when the input feature of the model is the 

geometric form of the blade 

 
 The prediction results of MLP and RF in a single model are optimal. The model constructed based on 

the stacking approach is superior to the base learner whose prediction results are best. However, the prediction 

results of the nine models were not very good, so plant height and stem thickness of the current plant 

individuals of the leaf geometry data were added to the input features of the models. The results obtained were 

superior to the prediction results without adding the individuals' plant height and stem thickness.  
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 The hyperparameters of the 8 machine-learning models with the addition of individual plant height and 

stem thickness are shown in Table 2. 

Table 2 

Hyperparameters of the 8 base models when the input features of the models are the geometric shape of the 
leaves and the height and stem thickness of the corresponding individual plants 

Model Para1 Value1 Para2 Value2 Para3 Value3 

Ridge alpha 1     

Lasso alpha 0.001 max_iter 20   

EN alpha 0.1 l1_ratio 0.1   

SVM C 5 kernel rbf   

MLP activation 
relu hidden_layer_sizes (25,25, 

25,25) 
solver adam 

KNN algorithm kd_tree leaf_size 1 n_neighbors 5 

RF min_samples_leaf 3 min_samples_split 0.1 n_estimators 51 

GBDT learning_rate 0.1 loss ls n_estimators 96 

 
 Similarly, the above 8 base models were used as the base-model and the linear regression algorithm 

was used as the meta-model for stacking. The obtained 9 sets of predicted data were normalized and a 1:1 

comparison graph between them and the actual values was constructed, and the specific results are shown in 

Fig. 12 and Fig. 13. 

 
Fig. 12 - The 1:1 plot of predicted versus actual values for the nine models when the input features  

of the models are the geometric shape of the leaves versus the height and stem thickness  
of the corresponding individual plants 
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Fig. 13 - Comparison of the evaluation metrics of the nine models when the input features  
of the models are the geometric shape of the leaves with the height and stem thickness  

of the corresponding individual plants 

 
 

 The prediction accuracy of the model was significantly improved with the addition of plant height and 

stem thickness corresponding to individual plants, and it is desirable to have a prediction model with higher 

accuracy. In agriculture and horticulture, the prediction of plant leaf biomass enables the assessment of plant 

growth and yield potential. This helps to adjust fertilization and irrigation strategies, optimize the growing 

environment of crops, and improve agricultural productivity and resource efficiency. Leaf biomass prediction 

is important for ecological research and precision agriculture research, promoting sustainable development of 

agriculture and environmental protection. 

 

Construction and Evaluation of Tomato Fruit Biomass Prediction Models 

 When a model is constructed with the geometric morphology data of the fruit (transverse and longitudinal 

diameters of the fruit) and its corresponding biomass data and the geometric morphology data are use as 

inputs to the model to predict its corresponding biomass, the 8 classical machine learning models (Ridge, 

Lasso, EN, SVM, MLP, KNN, RF, and GBDT), with their corresponding hyperparameters are shown in Table 

3. 

 

Table 3 

Hyperparameters of the 8 base models when the input feature of the model is the geometric form of the fruit 

Model Para1 Value1 Para2 Value2 Para3 Value3 

Ridge alpha 
50     

Lasso alpha 
0.1 max_iter 10   

EN alpha 0.1 l1_ratio 0.1   

SVM C 
1 kernel rbf   

MLP activation relu hidden_layer_sizes (30, 30, 30) solver adam 

KNN algorithm ball_tree leaf_size 3 n_neighbors 9 

RF min_samples_leaf 3 min_samples_split 0.1 n_estimators 21 

GBDT learning_rate 0.1 loss huber n_estimators 21 

 
 Similarly, the stacking model was constructed based on the above-mentioned base model. A 1:1 

comparison plot was constructed with the actual values after normalizing the obtained 9 sets of predicted data, 

as shown in Fig. 14 and Fig. 15. 
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Fig. 14 - The 1:1 plot of predicted versus actual values for the nine models when the input features  

of the models are the geometric shape of the leaves versus the height and stem thickness  
of the corresponding individual plants 

 
 

 
 Fig. 15 - Comparison of the evaluation metrics of the nine models when the input feature of the model is 

the geometric form of the fruit 
 
 

 As in the case of the  leaves, the plant height and stem thickness of the corresponding individual plant 

were added to the input features. The results obtained were again superior to the predictive models without 

the added plant height and stem thickness. The hyperparameters of the 8 machine learning models after 

adding individual plant height and stem thickness are shown in Table 4. 
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Table 4 
 

Hyperparameters of the 8 base models when the input feature of the model is the geometric form of the fruit 

Model Para1 Value1 Para2 Value2 Para3 Value3 

Ridge alpha 10     

Lasso alpha 0.1 max_iter 10   

EN alpha 0.1 l1_ratio 0.9   

SVM C 5 kernel rbf   

MLP activation 
relu hidden_layer_sizes (25, 25, 25, 

25) 
solver lbfgs 

KNN algorithm ball_tree leaf_size 3 n_neighbors 9 

RF min_samples_leaf 3 min_samples_split 0.1 n_estimators 21 

GBDT learning_rate 0.1 loss huber n_estimators 21 

 
 The above 8 base models were used as the base-model and the linear regression algorithm was used 

as the meta-model for stacking. The obtained 9 sets of predicted data were normalized and a 1:1 comparison 

graph between them and the actual values was constructed, as shown in Fig. 16 and Fig. 17. 

 

 
 

Fig. 16 - The 1:1 plot of predicted versus actual values for the nine models when the input features  
of the models are the geometric shape of the leaves versus the height and stem thickness  

of the corresponding individual plants 
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 Fig. 17 - Comparison of the evaluation metrics of the nine models when the input features  

of the models  are the geometric form of the fruit with the height and stem thickness  
of the corresponding individual plants 

 

 

 The leaf biomass prediction model constructed based on stacking had R2=0.65, MAE=0.79 and 

RMSE=1.27, whereas the evaluation indexes of the leaf biomass prediction model constructed based on 

stacking improved to a certain extent after adding the height and stem thickness of the current individual tomato 

plants to the input features. Compared with the model without the addition of height and stem thickness, the 

R2 increased by 0.21, MAE decreased by 0.3 and RMSE decreased by 0.46. The specific values were 

R2=0.86, MAE=0.49, and RMSE=0.81. Similarly, the fruit biomass prediction model was constructed based 

on stacking, with R2=0.85, MAE=0.59, and RMSE=0.9. After adding the plant height and stem thickness of 

the current tomato plant individuals to the input features, the evaluation indexes of the fruit biomass prediction 

model constructed based on stacking were improved to a certain extent, with an increase of 0.09 in the R2, a 

decrease of 0.26 in the MAE, and a decrease of 0.33 in the RMSE compared with that of the model with no 

addition of the plant height and stem thickness, with the specific values of R2=0.94, MAE=0.33, and 

RMSE=0.57. It is evident that the model's prediction accuracy can be effectively improved after adding the 

corresponding plant height and stem thickness of individual plants.  

 

Model validation 

 The predicted and measured values of different parts of tomato leaves and fruits at various periods were 

compared to assess the model's generalisation ability. 

         Fig. 18 shows the predicted values of leaves biomass at each growth cycle of the four positions compared 

with the measured values, and the results of section 9 were better, with RMSE=0.1473 g and MAE=0.1072 g 

between its predicted and actual values. The RMSE between the predicted and measured values of biomass 

of leaves during each growth cycle ranged from 0.1473 g to 0.5229 g; MAE ranged from 0.1072 g to 0.4190 

g. By comparing the predicted and measured values of leaf biomass, it was found that the predicted values 

might be larger or smaller than the measured values. The predicted results of leaf biomass fluctuated wildly, 

and the reason for the significant fluctuation of leaf error might be the large error mixed in the data collection 

process of the experiment. 

         Fig. 19 shows the predicted values of fruits biomass at each growth cycle of the four positions compared 

with the measured values, and the results of section fruit 3-2 were better, with RMSE=0.1206 g and 

MAE=0.0987 g between its predicted and actual values. The RMSE between the predicted and measured 

values of biomass of fruits during each growth cycle ranged from 0.1206 g to 0.4113 g; MAE ranged from 

0.0987 g to 0.2965 g. By comparing the predicted and measured values of fruit biomass, it was found that the 

predicted values might be larger or smaller than the actual values. However, the predicted results of fruit 

biomass fluctuated less compared with the results of leaf biomass, which might be due to the smaller samples 

of fruits. 

 Machine learning algorithms are highly flexible and computationally efficient and have been widely used 

for modeling and prediction of agricultural scenarios (Ribeiro et al., 2022; Saleem et al.,2021). The input factors 

selected in this study were all phenotypic indicators of individual tomato plants and did not include 

environmental factors. If the variables including environmental factors, location of planting area, and agronomic 

and management practices are coupled into the simulation of the biomass prediction model, the performance, 

accuracy, and generalization ability of the model will be greatly improved (Geng et al., 2021). 
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Fig. 18 - Comparison of predict and measured values of leaf biomass at different locations 

 
Fig. 19 - Comparison of predict and measured values of fruit biomass at different locations 
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CONCLUSIONS 

 In this study, tomato is taken as the research object, tomato organ morphology data were used as 

variables, morphological factors such as plant height and stem thickness were superimposed, and the biomass 

prediction model of tomato under organ scale is established based on machine learning and integrated 

learning, which specifies the optimal model construction method under organ scale and accurately realizes the 

biomass prediction of leaves and fruits of tomato. 

 The model is user-friendly and cost-effective. Farmers can anticipate fruit and leaf biomass by simply 

collecting geometrical-morphological data on tomato fruits and leaves using a measuring tool. The estimated 

cost of our test mainly includes measuring tools, ovens, computers, and other equipment, with a total of 

approximately 15,000 RMB. So that farmers can understand the growth status of the crop in real time, adjust 

cultivation and management measures and plant protection methods in a timely manner, and manage the 

tomato crop in a targeted manner to maximize yield and product quality. 

 Of course, this study still has the following shortcomings: first, the duration of the experiment needed to 

be shorter, and the subsequent tomato experiment needed to be conducted over a more extended period to 

improve the model's accuracy and generalization ability with more data. Second, the experiments were 

conducted only on tomatoes grown in solar greenhouses in the alpine region of the North China Plateau and 

did not consider other crops (e.g., cucumbers and eggplants, etc.), other growing regions (e.g., lamps in the 

North China Plateau), and other growing facilities (e.g., glass greenhouses), or field crops, and will be followed 

up with a more detailed experimental planning and experimental design to increase the abundance of the 

model's adaptability and the breadth of its use. Third, the acquisition of experimental data is manually obtained 

by hand, which has a certain degree of subjectivity and instability. This study did not consider the effects of 

pests and diseases, root systems, and soil on the whole process of tomato growth and development. In the 

following study, the effects of different environmental factors, agronomic measures and management 

conditions should be explored as well as the effects of pests and diseases on the biomass prediction model. 

Therefore, related research should be strengthened and it should be strived to construct more accurate and 

reliable biomass prediction models and to apply them to actual agricultural production to promote the progress 

of agricultural science and provide scientific basis and technical support for optimizing agricultural production. 

 

ACKNOWLEDGEMENT 

 This research, titled ‘Construction and validation of a predictive model for tomato organ biomass at 

organ scale based on stacking learning’, was funded by the Shanxi Agricultural University Special Merit 

Program (XDHZFQY2022-02) and the Basic Research Program of Shanxi Provincial Science and Technology 

Department (202103021224123). 

  

REFERENCES 

[1] Colomina I., Molina P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: a 

review. ISPRS Journal of Photogrammetry and Remote Sensing. 92, 79-97.  

[2] Damtew A. (2017). Review on Genetics and Breeding of Tomato (Lycopersicon esculentum 

Mill). Advances in Crop Science & Technology, 05(05), 306.   

[3] Yuanyuan Fu, Guijun Yang, Xiaoyu Song, Zhenhong Li, Xingang Xu, Haikuan Feng, Chunjiang Zhao. 

(2021). Improved Estimation of Winter Wheat Aboveground Biomass Using Multiscale Textures 

Extracted from UAV-Based Digital Images and Hyperspectral Feature Analysis. Remote Sensing. 13(4), 

581.  

[4] Liying Geng, Tao Che, MingGuo Ma., Junlei Tan, HaiBo Wang. (2021). Corn Biomass Estimation by 

Integrating Remote Sensing and Long-Term Observation Data Based on Machine Learning Techniques. 

Remote Sensing. 13(12), 2352. 

[5] Jahnavi Y., Elango P., Raja S.P., Nagendra Kumar P. (2023). A Novel Ensemble Stacking Classification 

of Genetic Variations Using Machine Learning Algorithms. International Journal of Image and Graphics. 

(02), 2350015. 

[6] Ji Wen Cheng, Shusen Wang, Yuyang Luo, Cen Zhang. (2022). Prediction model of above-ground 

biomass of Salix based on BP neural network (基于 BP神经网络的沙柳地上生物量预测模型), Forestry 

Science Research. (003), 035. 

[7] Qi Liu, Yaxin Wang, Jie Yang, Wuping Zhang, Huanchen Wang, Fuzhong Li, Guofang Wang, Yuansen 

Huo, Jiwan Han. (2023). Smartagb: Aboveground Biomass Estimation of Sorghum Based on Spatial 



Vol. 74, No. 3 / 2024  INMATEH - Agricultural Engineering 

 

 151  

Resolution, Machine Learning, and Vegetation Index. EAI Endorsed Transactions on Internet of Things. 

9(1), e1.  

[8] Lingzhi Li, (2013), Quantitative study of tomato growth with different nitrogen supply levels based on 

functional structure feedback mechanism (基于功能结构反馈机制下番茄生长对不同供氮水平定量化研

究), [Doctoral dissertation, Shanxi Agricultural University]   

[9] Maddaloni P., Continanza D.N., Del Monaco A., Figoli D., Di Lucido M., Quarta F., Turturiello G. (2022). 

Stacking machine-learning models for anomaly detection: comparing AnaCredit to other banking 

datasets. Bank of Italy Occasional Paper. (689). 

[10] Qiaoxue Dong, Yiming Wang, Jialin Hou. (2007), Tomato structural-functional model: Organ-based 

functional model and validation (番茄的结构-功能模型Ⅱ:基于器官水平的功能模型与验证研究), Chinese 

Journal of Ecological Agriculture. (01),122-126. 

[11] Junior F.M.R., Bianchi R.A., Prati R.C., Kolehmainen K., Soininen J.P., Kamienski C.A. (2022). Data 

reduction based on machine learning algorithms for fog computing in IoT smart agriculture. Biosystems 

Engineering. 223, 142-158. 

[12] Saleem M.H., Potgieter J., Arif K.M. (2021). Automation in Agriculture by Machine and Deep Learning 

Techniques: A Review of Recent Developments. Precision Agriculture. 22(6), 2053-2091. 

[13] Weifeng Wang, Yuancai Lei, Xuefeng Wang, Haoyan Zhao. (2008). Review of forest biomass models 

(森林生物量模型综述), Journal of Northwest Forestry College. 23(2), 58-63.   

[14] Xu Wang, Yushuai Wang, Xuemeng Lian, Yuguang Wang, Lihua Yu, Gui Geng, (2022), Inversion of 

chlorophyll content in sugar beet canopy based on UAV multispectral technique (基于无人机多光谱技

术的甜菜冠层叶绿素含量反演). Sugar Crops of China. 44(4), 36-42. 

[15] Zhong Xin Chen, Jianqiang Chen, Huajun Tang, Yun Shi, Peileng, Jia Liu, Limin Wang, Wenbin Wang, 

Yanmin Yao, (2016), Progress and perspectives on agricultural remote sensing research and 

applications in China (农业遥感研究应用进展与展望), Journal of Remote Sensing. 20(5), 748-767.  

[16] Yang Liu, Jue Huang, Qian Sun, Haikuan Feng, Guijun Yang, Fuqin Yang. (2021). Estimation of 

aboveground biomass of potato based on UAV digital image (利用无人机数码影像估算马铃薯地上生物

量), National Remote Sensing Bulletin. 25(9), 2004-2014.    

[17] Zhaoying Mu, Zipeng Zhang, Hao Zhang, Lichun Jiang. (2024). Applying Machine Learning Algorithm 

Models to Predict Aboveground Biomass of Larix gmelinii in Xing'an (应用机器学习算法模型预测兴安落

叶松地上生物量), Journal of Northeast Forestry University. 52(03), 41-47. 


