
Vol. 74, No. 3 / 2024                             INMATEH - Agricultural Engineering 

 

  105  

 DESIGN OF AN UNMANNED TRANSFER VEHICLE LOOP DETECTION SYSTEM  
FOR GRAIN DEPOT SCENARIOS 

/ 

用于粮库场景的无人驾驶转运车回环检测系统设计 
 

Boqiang ZHANG1), Dongding LI1), Tianzhi GAO*1), Kunpeng ZHANG2), Jinhao YAN1), Xuemeng XU1) 

1) School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001 / China; 
2) College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001 / China 

Tel: 18003988576; E-mail: gtz1069312977@163.com 

Corresponding author: Tianzhi GAO 

DOI: https://doi.org/10.35633/inmateh-74-09 

 
Keywords: Grain depot, Food logistics, LCD, SLAM, Deep learning, Feature extraction 

 
 

ABSTRACT  

The grain depot scenario is critical for grain logistics and transportation, and it is also a key setting for the 

efficient operation of intelligent grain logistics platform vehicles. A large number of repetitive and specific 

building structures, along with low-textured walls, characterize the grain depot scene. Loopback detection is 

an essential module in visual SLAM, and an efficient system can eliminate accumulated errors. While 

traditional systems rely on manually designed features, which struggle to adapt to the unique grain depot 

environment, this paper proposes a deep learning-based loopback detection system for grain transfer trucks. 

Leveraging a custom dataset capturing both grain depot environments and loopback scenarios, the system 

employs convolutional neural networks for identifying building equipment and door numbers, edge extraction 

for robust feature matching, and image template matching for efficient loopback verification. Extensive testing 

on the grain depot loopback dataset demonstrates that the system significantly improves loopback detection 

accuracy and efficiency, paving the way for reliable autonomous navigation in grain depots. 

 

摘要  

粮库场景是粮食物流转运的重要场景，同时也是智能粮食物流平台车高效运行的关键环节。粮库的大量重复和

特殊建筑结构以及缺乏纹理的墙体颜色是粮库场景的特点。回环检测模块是视觉定位与建图的一个重要模块，

有效的回环检测能够消除累积的误差，传统的回环检测使用的特征是人工设计的特征，在粮库的特殊场景下难

以发挥出良好的效果。本文提出了一种基于深度学习的粮食转运车回环检测系统，利用录入了粮库环境和回环

场景的定制化数据集，使用卷积神经网络识别建筑设备和门牌号码，通过边缘提取进行稳健的特征匹配，并采

用图像模板匹配进行高效的回环验证。在粮库回环数据集上进行的广泛测试表明，该系统显著提高了回环检测

的准确性和效率，为在粮库中实现可靠的自动导航铺平了道路。 

 

INTRODUCTION 

A nation's economy and quality of life are intrinsically linked to agricultural production, and food storage 

has been a cornerstone practice for farmers and traders throughout history. Grain storage is the main 

realization scenario of this paper, which is vital for the preservation of new grain, though significant 

breakthroughs in grain storage and transportation methods are still lacking. To tackle current problems in the 

grain storage and transfer process, an intelligent grain logistics platform vehicle has been developed to replace 

traditional grain transport trucks (Zhang et al., 2023). This vehicle efficiently handles the transfer of grain from 

the raw grain cleaning center to various storage facilities. Compared to traditional large-scale grain transport 

trucks, the intelligent logistics platform vehicle offers features such as autonomous route planning, dynamic 

obstacle avoidance, and simultaneous localization and mapping in unknown areas. These capabilities 

effectively reduce long waiting times for numerous trucks during the harvest season in grain depot parks, health 

hazards to workers caused by harsh working environments, and traffic accidents within the parks. Vehicle 

navigation in these scenarios relies heavily on Simultaneous Localization and Mapping (SLAM) technology. 

Achieving accurate localization and map-building results is crucial for efficient operation. To balance 

effectiveness with cost, this research focuses on vision sensor-based SLAM.  
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However, the unique features of grain depots pose challenges for traditional vision approaches. Their 

abundance of untextured granary buildings, floors, and specialized equipment can lead to unstable and 

inefficient feature detection and matching, particularly during loop detection. 

Loop detection is a crucial part of the visual SLAM system, significantly reducing the cumulative error 

generated by the system by identifying and revisiting previously visited locations, thereby improving the 

accuracy of the constructed map. When the system detects a loop closure, it transmits this information to the 

backend for further optimization and error elimination, resulting in a more accurate map (Gao et al., 2017). 

Appearance-based loop detection methods are indeed prevalent in visual SLAM (Qu and Wang, 2011), 

where rich visual information readily provides sufficient appearance cues for the system to rely solely on 

camera data, bypassing the compounding errors inherent in trajectory data. Consequently, in visual SLAM, 

loop detection essentially boils down to comparing image similarities. 

Classical loop detection algorithms, as highlighted by Wu et al. and Qiu et al. (Wu et al., 2010; Qiu et al., 

2023), often rely on manually designed features like SIFT, SURF, ORB, and BRIEF (Rublee et al., 2011) to 

represent images. However, this approach is not without its limitations. These traditional features, meticulously 

crafted by computer vision researchers, exhibit distinct characteristics: some are sensitive to environmental 

changes such as illumination variations, while others are hindered by computational complexity, limiting their 

broad applicability in diverse real-world scenarios. 

With the rapid development of computer vision thanks to the continuous progress of deep learning 

techniques, CNNs have achieved great success in computer vision fields such as image classification, image 

segmentation, and target detection thanks to their powerful feature learning and representation capabilities 

(Hongtao et al., 2016). Since 2015, there have been attempts to use deep learning to extract features from 

images and thus replace hand-crafted features.  

Xia et al. used the AlexNet network for feature extraction (Xia et al., 2017), followed by secondary training 

using Support Vector Machines (SVM) algorithm, and this loop detection model exhibited better robustness. 

Bai et al. proposed a CNN feature-based loop detection method that combines the pre-trained CNN 

intermediate layer output with the traditional sequence-based matching process output to reduce the 

computational complexity of the search strategy (Bai et al., 2018).  

Mukherjee et al. used a deep deconvolutional network to represent the scene as a low-dimensional vector 

and determine the loop by comparing this vector (Mukherjee et al., 2019). Yang et al. proposed a parallel 

recurrent search and verification method that combines features from bag-of-words models and features from 

convolutional neural networks to act on loop detection (Yang et al., 2021).  

Wang et al. used a two-stage loop detection strategy to avoid blind matching (Wang et al., 2021). Guo et 

al. used a VGG-19 network to extract the features of the images for the determination of loop detection by a 

locally sensitive hashing algorithm (Guo Jizhi et al., 2021). Scene-specific loop detection is still relatively rare. 

To enhance loop detection efficiency in grain depot scenarios, this paper proposes a Convolutional Neural 

Network (CNN)-based approach for visual SLAM. This approach aims to improve both the accuracy and recall 

rate of loop detection. Grain depot environments are characterized by unique structures, such as towering 

silos, shallow round bins, and spherical bins. These structures are omnipresent in grain depots and pose 

challenges for traditional geometric feature-based methods. CNNs, on the other hand, offer long-term stability 

and robustness to perspective and illumination changes, making them ideal for feature extraction in these 

scenarios. Therefore, this paper proposes a deep learning feature-assisted visual SLAM framework specifically 

tailored for grain depot environments. 

 

MATERIALS AND METHODS 

In the grain depot, the shape of each depot is consistent and regularly arranged. The SLAM system is 

prone to classify the depots in different locations as the same scene when performing loopback determination, 

thus delivering wrong fitting information to the back-end and causing confusion in the system. In this paper, 

the system was divided into two branches. One is a lightweight GhostNet network, which extracts the deeper 

features of the image after transfer learning training. The other branch is a network for number recognition, 

which uses the grain depot door number to distinguish different grain depots, as shown in Figure 1.  

 

The loopback detection system as a whole is shown in Figure 2. 



Vol. 74, No. 3 / 2024                             INMATEH - Agricultural Engineering 

 

  107  

 
Fig. 1 - Grain warehouse door number 

 

 
Fig. 2 - Algorithm flow chart  

CNN Feature Extraction 

CNNs have shown powerful performance within the field of computer vision for computer vision tasks such 

as target detection, image classification, and semantic segmentation. Traditional convolutional neural networks 

often contain a large number of parameters and complex computations, which are limited by the limited 

memory and computational resources of embedded devices, and it has become a new trend to study portable 

lightweight, and efficient convolutional neural networks (BI et al., 2024; Feng et al., 2024). For the above 

problems, the current common solution ideas are compact deep neural networks and efficient neural 

architecture design. 

GhostNet network was proposed by Huawei Noah's Ark Lab in 2020, which is a lightweight CNN model 

with a smaller number of parameters and operations to ensure certain accuracy and can be deployed on 

removable embedded devices to meet the real-time requirements of visual SLAM systems. It divides the 

traditional convolution operation into two steps: the first step first generates feature maps with fewer channels 

using traditional convolution with less computation; the second step further generates more new feature maps 

using a small amount of computation on top of the generated feature maps using deep convolution; finally, the 

two feature maps are stitched together and the output is the final output. The idea of GhostNet is a phased 

convolutional computation module, which performs a linear convolution based on a few nonlinear convolutions 

to form a new feature map, and the large number of new feature maps obtained in this way is called Ghost of 

the previous feature maps. As shown in Figure 3, (a) figure shows the ordinary convolutional generation of 

feature maps, and (b) shows the Ghost module generation of feature maps. 

The role of the GhostNet network itself is primarily to perform image classification and retrieval, rather 

than final output image features. From the network structure, the final fully connected layer serves as the output 

layer for image classification, and therefore is not considered as a feature extraction layer. The features 

extracted by the previous convolutional layer are too coarse to imply the global image. In this paper, the output 

of the FC8 layer of the GhostNet model is used as the features of the image, and the output of the FC8 layer 

is 1280 dimensional data. 
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Fig. 3 - Comparison of normal convolution and Ghost module 

 

Similarity Comparison 

For the calculation of the distance between feature vectors, the more common and effective ones are 

the Euclidean distance and the cosine distance, if there are two feature vectors a[a1, a2, a3, ... , an]T and b[b1, 

b2, b3, ... , bn]T, then the cosine distance (Zou and Umugwaneza, 2008) between two vectors can then be 

expressed as:  

 

T

T T

a b
d( a,b )

( a a ) ( b b )


=

  
 (1) 

When the feature vectors are of high dimension using the above two determination methods will be 

computationally intensive and affect the corresponding accuracy and precision, it is more important to use a 

more efficient computation method, which will help to improve the accuracy and real-time performance of the 

loop detection algorithm. Successful image retrieval methods have shown that data augmentation of the 

original feature vector can improve its ability to describe the image and increase computational efficiency. In 

this paper, Principal Component Analysis (PCA) (Salih Hasan and Abdulazeez, 2021) and binarization are 

used to augment the extracted features to improve the image feature representation.  

The steps of data processing are as follows. 

1) Calculate the covariance matrix Σ of the sample matrix, which is calculated as: 
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X X
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2) The SVD decomposition (Singular Value Decomposition) is performed on the covariance matrix Σ. 

The calculation is: 

 TUSV=  (3) 

The U and V unitary matrices in the formula are the left singular matrix and the right singular matrix. 

3) The sample matrix is de-correlated using the left singular matrix U. The calculation is: 

 
T T

rX U X=  (4) 

4) Calculate the mean of each row of the sample matrix after dimensionality reduction. 

 

m
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5) The sample matrix is binarized. The calculation is done as follows: 
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After the above process, the feature vector of each image is represented as a low-dimensional binary 

vector. The distance between two images can be expressed as the corresponding Hamming distance. The 

Hamming distance, which is the number of different elements of two equal-dimensional feature vectors at 

corresponding positions, is often used to determine the similarity between two images in the field of image 

retrieval. 
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Improved Canny Edge Extraction 

Although the Canny edge extraction algorithm is easier to use and the edges are extracted more 

accurately, the traditional Canny algorithm has some disadvantages. Only Gaussian filtering is used in the 

image filtering stage, which is better for removing continuous noise such as Gaussian noise. However, 

Gaussian filtering generally uses pre-set conditions and is not able to take a more targeted filtering of the 

image based on the actual information of the image, which may make the image blurred. The image is unable 

to effectively filter out other types of noise, such as salt and pepper noise. In the final stage of the Canny edge 

extraction algorithm a human input threshold is used to determine the pixels in the image, resulting in poor 

adaptation to the image. In this paper, the traditional Canny algorithm is improved in two ways: the original 

Gaussian filter was replaced with a hybrid filter consisting of a Gaussian filter and an adaptive median filter, 

and an adaptive thresholding scheme was chosen to replace the fixed threshold in the final stage of the original 

algorithm. 

The Gaussian filter can smooth the image and remove some low-frequency noise, and the adaptive 

median filter can remove the salt and pepper noise in the image, etc. The combination of the two can better 

remove the noise in the image, improve the quality of the image, and retain the details of the image.  

Adaptive median filtering (Yu et al., 2016) is based on median filtering and addresses the window size 

problem, utilizing the advantages and disadvantages of filtering in both large and small windows, and adapting 

to change the size of the window according to the noise. After determining the filter window size, the adaptive 

median filter will set up judgment conditions to identify whether the median point is a noise point, which 

effectively avoids the problem of filter failure in median filtering. The adaptive median filter first constructs a 

rectangular window S with point (x,y) as the center point of the window. The following symbols are used to 

describe the principle: Zmin is the minimum gray value in the window S, Zmax is the maximum gray value in the 

window S, Zmed is the median gray value in the window S, Zxy is the gray value of the coordinate (x,y) position, 

and Smax is the maximum window size allowed by S. The process of adaptive median filtering can be divided 

into two processes A and B. 

 
med min

med max

A1 Z Z

A2 Z Z

= −

= −
 (7) 

 
xy min

xy max

B1 Z Z

B2 Z Z

= −

= −
 (8) 

If A1>0 and A2<0, go to process B. Conversely increase the size of the window. If after increasing the size 

of the window is not greater than Smax, repeat process A. Instead output Zmed. In process B if B1>0 and B2<0, 

then output Zxy, and vice versa output Zmed. 

It is inevitable that the edge information of the image will be lost when denoising with adaptive median 

filtering, in this paper, the determination of edge keeping was added in addition to the process of the 

determination of adaptive median filtering, and a new threshold was designed to protect the edge pixels. The 

calculation formula of the threshold value is (9). 

 

N ^
2

ij

i 1, j 1

1
T ( X X )

N-1 = =

= −  (9) 

In the formula, T is the threshold to be sought and 
^

X  is the average value of the pixels in the window. 

The gray values of the elements surrounding the center element in the window are used as the basis for 

determination. When the difference between the gray value of the center element and the gray value of the 

surrounding elements is greater than the threshold value T, the number of pixels accounting for one-fourth to 

three-fourths of the total number of surrounding elements, the center pixel is judged to be an edge point, and 

vice versa is judged to be a non-edge point. The image produced by adaptive median filtering and the edge 

information image are superimposed to complete the output. The pseudo-code for this part of the program is 

as follows: 

Algorithm 1 Adaptive median filtering for edge preservation 

A1=Zmed-Zmin, A2=Zmed-Zmax 

If A1>0 and A2<0 do 

B1=Zxy-Zmin, B2=Zxy-Zmax 

If B1>0 and B2<0 do 
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Reserve Zxy 

Else do 

Reserve Zmed 

Else do 

Enlarge window 

If S≤Smax do 

Return 

Else do  

Reserve Zxy 

D=Zxy-T (Take nine grids for example) 

If 2<D<7 do 

Reserve Zxy 

Else do 

Return 

Merge image 

 

 

Traditional Canny edge extraction algorithms use high and low thresholds to discriminate edge 

information, but the size of the high and low thresholds need to be set manually and have low adaptivity. In 

this paper, Otus adaptive thresholding algorithm (Sha et al., 2016) is used to give the high and low thresholds, 

the algorithm calculates the corresponding intra-class variance of the foreground and background through the 

different dividing values of the foreground and background parts of the detected target image, and the dividing 

value corresponding to the maximum value of the intra-class variance is the adaptive threshold calculated by 

Otus. 

The coarse localization of the digital part uses the template matching technique in image processing 

technology. Template matching technique is a common image recognition technique, it first establishes a 

template library, the template library stores the content to be recognized, with the template library templates to 

traverse the input image, by searching for regions in the target image that match the given template to 

recognize a specific region in the image. In this paper, since only a coarse localization of the numbers on the 

granary is required, a template library consisting of numbers is constructed for template matching. In this paper, 

an image template library of 9 numbers from number 1 to number 9 is constructed with a size of 

300pixel×300pixel, and an image can be selected from the template library to match with the input image when 

template matching is performed. The template library image is shown in Figure 4. 

 

 
Fig. 4 - Digital template library 

 

Construction of CNN for Number Classification 

After coarse localization of the digital portion using image template matching, the portion where digits may 

be present is cropped from the image. The template matching technique achieves matching by finding the 

region in the target image that is most similar to the template image. However, this method may be affected 

by a number of factors that can lead to inaccurate matching. In contrast, convolutional neural network is a 

deep learning model that automatically extracts features from an image by learning a large amount of image 

data to achieve more accurate image recognition. Therefore, in this paper, a convolutional neural network is 

built to achieve accurate recognition of numbers. 

The convolutional neural network built in this paper contains an input layer, a convolutional layer, a pooling 

layer, a fully connected layer and an output layer. The overall architecture of the network is shown in Table 1. 

The input to the network is a 28*28 image, a 5×5 convolution kernel is used in the first convolutional layer, 

followed by a 2×2 maximum pooling operation, and the above operation is repeated. At the end of the network 

is a fully connected layer and finally the network outputs the prediction through a fully connected layer of 10 

neurons. 
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Table 1 

Convolutional neural network structure 

Operator Input Out Kernel 

Input 28 × 28 × 1 28 × 28 × 1  

Conv 28 × 28 × 1 24 × 24 × 32 5 × 5 × 1 

ReLU 24 × 24 × 32 24 × 24 × 32  

MaxPool 24 × 24 × 32 12 × 12 × 32  

Conv 12 × 12 × 32 8 × 8 × 64 5 × 5 × 32 

ReLU 8 × 8 × 64 8 × 8 × 64  

MaxPool 8 × 8 × 64 4 × 4 × 64  

FC 4 × 4 × 64 1024  

FC 1024 10  

 

Loop generation 

The key to loop detection is to effectively detect the matter that a camera or other sensor device has 

passed through the same place (Quan Meixiang et al., 2016). If this thing can be successfully detected, more 

valid data can be provided to the back-end in a mature SLAM framework to get a globally consistent estimate 

(Di et al., 2018). Image selection needs to be taken into account when detecting image similarity; if the selection 

is too close, it will result in too much similarity between two frames, which will make it difficult to detect the 

frames inside the history frames that produce a loop (Liu Guozhong and Hu Zhaozheng, 2017). For example, 

the detection results in the nth frame being the most similar to the n-1 and n+1th frames, but obviously, such 

a loop judgment is meaningless. So, the order of the images should be processed in some way during the 

detection, assuming that the current frame is the nth frame and its neighbor has k frames of images, then the 

frame for loop similarity comparison should be outside the nth and kth frames. 

 

RESULTS 

Experimental environment 

The equipment used in the test is an intelligent grain logistics platform vehicle, independently developed 

by Henan University of Technology. This self-driving vehicle is equipped with sensors such as LIDAR, a 

binocular camera, millimeter-wave radar, and RTK. It includes mounted devices like a storage unit, grain 

unloading system, wire control chassis, sensor module, and a core control unit computer. The vehicle can 

handle a 20-degree slope with a 3-ton load and features a large-capacity battery, ensuring it meets the 

operational requirements of a grain depot, as illustrated in Figure 5. The computer configuration used was an 

Inter(R) Xeon(R) CPU, an NVIDIA RTX3060 graphics card, 14 GB of RAM, and a software configuration of 

Python 3.8, CUDA 11.3, PyTorch 1.11.0, and an Ubuntu 20.04 operating system. 

Grain Depot Environment Dataset and Model Training 

For the grain depot scene in the actual environment, this paper uses monocular image acquisition 

equipment to produce a grain depot scene dataset, which has 1180 photos and divides the training set and 

test set according to 5:1. The dataset cover different environments with different lighting, shooting angles, 

shading, distance and size, which can easily reflect the existence of special buildings and special mechanical 

equipment in the grain depot environment. 

The grain depot dataset produced in this paper contain three types of grain depots: cottage silos, shallow 

round silos, and vertical silos, which are widely used in most grain depots in China. In addition, the grain 

warehouse data set also includes common grain-related machinery and equipment for grain transportation, 

ventilation and drying, and bulk grain cleaning, such as steering conveyor, cleaning sieve, horizontal conveyor, 

mobile grain suction machine, bucket elevator, scraper conveyor, screw conveyor, grain picker, flat conveyor, 

tape conveyor, centrifugal ventilator, low-noise double-suction environmental protection centrifugal fan, grain 

warehouse insulation doors and windows, and weighing weighbridge. These devices play an important role in 

the harvest season, and these mechanical devices are generally used only in the grain depot environment and 

have a high degree of recognition. The grain depot data set is partially shown in Figure 6. 
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Fig. 5 - Henan University of Technology independently developed intelligent grain logistics platform vehicle 

 
Fig. 6 - Grain depot dataset 

 
Fig. 7 - Number of images of each category in the grain depot dataset 

 
Fig. 8 - Distribution of grain depot dataset size 

 

To address the limitation that the dataset produced in this paper cannot be as large as the world-

renowned datasets, this paper employs data expansion strategies to augment the images within the grain 

depot dataset using various simple and effective methods, including flipping images left and right, random 

cropping, rotation, panning, noise perturbation, and luminance contrast transformation, thereby enhancing the 

model's robustness and adaptability to the grain depot scene. ImageNet dataset are computer vision dataset 

created by Fei-Fei Li, a professor at Stanford University, who led the creation of the ImageNet dataset. The 

dataset contains 14,197,122 images and uses pre-trained parameters to obtain good initial parameters for 

network training (Deng et al.,2009). This paper uses the GhostNet model trained on the ImageNet public 

dataset as the initialization weights for training the network, and this operation enables the network to show 

better performance in subsequent use. 
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SVHN (Street View House Number) Dateset is derived from Google Street View House Number and 

contains a large number of door numbers, as shown in Figure 9. The network is trained using the SVHN dataset 

as a way to adapt the classification of door numbers above the grain depot. In the grain depot environment, 

each depot has a consistent shape, and it is easy to classify depots in different locations as the same scene 

in the loopback detection system. 

 
Fig. 9 - SVHN dataset 

 

In this chapter training, Stochastic Gradient Descent (SGD) is used for training, the Famma of SGD is set 

to 0.1, the initial learning rate is 0.001, and 32 training images are selected for each iteration. Figure 10 and 

Figure 11 show the training of the pre-trained GhostNet network on the grain depot dataset. Figures 12 and 

13 show the training of the SVHN dataset. 

 
Fig. 10 - Loss function of training set 

 
Fig. 11 - Test set loss function 

 
Fig. 12 - Loss function of training set 

 
Fig. 13 - Loss function of training set 

 

Edge extraction and template matching 

The edge extraction algorithm is improved in the 'Improved Canny Edge Extraction' section of this paper, 

in which a hybrid filter combining Gaussian filter and adaptive median filter is used instead of the original 

Gaussian filter in the edge extraction algorithm, and adaptive high and low thresholds are used instead of 

manually setting the original high and low thresholds. This section makes a comparison between the hybrid 

filter and the improved edge extraction algorithm. 

Gaussian noise and salt-and-pepper noise were added to the image, and Gaussian filter and the hybrid 

filter in this paper were used respectively for processing, and the effect was shown in Figure 14. From left to 

right, the original image, the image with Gaussian and Pepper noise added, the image processed using the 

Gaussian filter in the original algorithm, and the image processed using the hybrid filter in this paper, are shown. 
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Fig. 14 - Comparison of the effect of filtering algorithms 

 

The hybrid filtering algorithm proposed in this paper outperforms the Gaussian filtering algorithm used 

in the conventional Canny edge extraction method, both in terms of noise removal and edge information 

retention. 

The traditional Canny edge extraction algorithm and the improved edge extraction algorithm are used 

to extract the edges of the grain depot image. The extraction results are shown in Figure 15. 

 
Fig. 15 - Comparison of edge extraction effect 

 

It can be seen that the original Canny edge extraction algorithm is prone to extract more noise during 

edge extraction and the edges are not well protected. After improvement, it can show better performance. 

The system performs edge extraction on the images in the template library as well as on the input image, 

followed by coarse localization of the target on the input image using a template matching algorithm. In this, 

the input images are processed using image pyramid, which reduces the amount of computation and time 

spent by utilizing images of different resolutions for multi-scale processing. At the same time, by using images 

of different scales for matching, the accuracy and robustness of matching can be improved. As shown in Figure 

16. After coarse localization of the part of the input image that may be a digit the part is cropped to ensure that 

the digit occupies most of the area in the cropped image, and the cropped image is fed into the previously 

constructed convolutional neural network for accurate digit recognition. 

 
Fig. 16 - Results of image template matching 

 

During the matching process, some parts that are not numbers can be matched, for example, the left 

box in Figure 16 is not a number, these parts can be well disposed of after entering into the convolutional 

neural network to ensure the accuracy of the system. 

PR Curve Metrics 

To verify the performance of the algorithm in this paper, comparisons are made in terms of Precision-

Recall (PR) curve metrics, and extraction time of image features, respectively. 

In the loop detection task, a classification can be made of the various phenomena that occur. The two 

images are judged by the algorithm to be the same scene as a loop. If the two images are not actually from 

the same scene, the phenomenon is called False Positive (FP); otherwise, it is True Positive (TP). If two images 

from the same scene are determined by the algorithm to be from different scenes, they are called False 

Negative (FN), otherwise, they become True Negative (TN). P and R in the PR curve are defined as shown in 

equation (10) (Shin and Ho, 2018). 

 
TP

Pr ecision
TP FP

=
+

 (10) 

 
TP

Recall
TP FN

=
+

 (11) 
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Figure 17 shows the processing of the data after the features of the image have been extracted by the 

deep learning network. The performance when compared directly using cosine distance without data 

processing is different from the performance after performing principal component analysis to reduce the 

dimensionality and binarization. Therefore, in this paper, PCA and binarization were performed on the data. 

The PR curve is an important metric for determining loop detection algorithms, and a good loop detection 

algorithm should have both high accuracy and recall. This paper uses the bag-of-words model DBoW3 and 

VGG16 (Simonyan K. and Zisserman A., 2014) for comparison, and VGG16 also uses PCA reduction and 

binarization for data processing. 

Figure 18 shows the experimental results of the algorithm under the grain depot loop dataset, with the 

horizontal axis indicating the recall rate and the vertical axis indicating the correct rate. From the experimental 

results, it can be seen that the proposed loopback detection system in this paper has higher correctness and 

recall than the traditional bag-of-words model when performing loopback detection in a grain depot, and it is 

also more advantageous than a single convolutional neural network, which can be better applied to grain depot 

scenarios. When the classification of door numbers of grain depots is added, the accuracy and recall perform 

better than the single trained GhostNet network. Considering that there is not a door number in every location, 

the performance is only slightly better than a single network. 

 
Fig. 17 - Data processing comparison chart 

 
Fig. 18 - Grain depot scene loopback PR curve 

 

CONCLUSIONS 

Grain depots serve as critical lifelines for a nation's inhabitants. However, the influx of new grain each 

year poses numerous challenges that demand swift and decisive solutions. Employing modern equipment and 

technology in grain depots is a crucial path forward. This paper focused on addressing some of these 

challenges, specifically the repetitive building structures and low-textured environments that hinder the 

efficiency and accuracy of loop detection. Word bag models, commonly used in this context, suffer from 

limitations in both speed and accuracy. 

This paper addressed the challenge of loopback detection in grain depots, where judging the similarity 

of unique buildings and consistent shapes can be difficult. A GhostNet architecture was leveraged to extract 

deep image features, which were then processed through PCA and binarization for enhanced representation. 

Additionally, a two-stage digit recognition branch was introduced. This branch utilized image template matching 

for coarse localization followed by CNNs for precise digit recognition. By combining these approaches, our 

loopback detection module for visual SLAM demonstrated robust performance in grain depots, paving the way 

for modernizing traditional grain storage facilities. 
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