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ABSTRACT 

To address the difficulties in logistics distribution in remote rural areas, a systematic planning of agricultural 

logistics distribution for UAV distribution was performed in this study. Considering the limit of cruising range, 

from the perspective of green routing, a multi-package distribution path planning model of UAV agricultural 

logistics considering the limitation of cruising range of unmanned aerial vehicle (UAV) was established to 

minimize total energy consumption. The task allocation was conducted according to the actual number of 

UAVs. Meanwhile, a mixed integer nonlinear programming model of task allocation was established. The 

improved ant colony algorithm was employed to solve the problem. The core idea was to exchange the 

pheromones of each ant subgroup, and subsequently to apply the insertion-based heuristic method and 

crossover and inversion operations to optimize the path. For the cases of remote areas in western China, the 

agricultural UAV distribution path planning considering the mileage limit contributes to saving resources and 

obtaining the lowest energy consumption distribution path. In addition, for the problem of agricultural logistics 

distribution path planning considering the mileage limit of UAV, the improved ant colony algorithm exhibits 

higher solution accuracy than the traditional ant colony algorithm. 

 

摘要 

为解决偏远农村地区物流配送存在的困难,对无人机配送进行农业物流配送系统性规划,考虑到续航里程限度,从

绿色路由的角度,以最小化总能耗作为目标,建立了考虑无人机续航里程限制的无人机农业物流多包裹配送路径

规划模型；根据实际无人机数量进行任务分配,建立了任务分配混合整数非线性规划模型,采用改进蚁群算法求

解,其核心思想是将各个蚂蚁子群的信息素进行交换,再采用基于插入的启发式方法和交叉、反转操作进行路径

优化,经过对照实验。对于我国西部偏远地区的案例,考虑续航里程限制的农业无人机配送路径规划有利于节约

资源,能得到能耗最低的配送路径；对于考虑无人机续航里程限制的农业物流配送路径规划问题,本文设计的改

进蚁群算法与传统蚁群算法相比,本文改进蚁群算法具有较高的求解精确度。 

 

INTRODUCTION 

 Agricultural logistics distribution path planning has its own particularity. Agricultural products are fresh 

and seasonal, and are more sensitive to distribution distance and distribution efficiency. The allocation of goods 

in agricultural products warehouses should not be too frequent, and the profits of agricultural products 

themselves are not high. To ensure the interests of farmers, the cost of warehouse construction and distribution 

should be reduced as much as possible (Li et al., 2021). Recently, drone delivery has attracted considerable 

attention in the logistics industry. Numerous e-commerce companies and logistics suppliers have begun to test 

the application of drones to deliver packages. In China, Shunfeng and Jingdong took the lead in applying 

drones to deliver parcels to remote rural areas in places including Jiangxi and Shaanxi, and received 

government support. With the continuous improvement of civil unmanned aerial vehicle (UAV) control policies, 

UAVs will exert a vital role in distribution and emergency distribution in remote areas. Owing to the particularity 

of agricultural logistics distribution, refrigeration was needed to control the temperature during storage and 

transportation, which would produce a large amount of carbon dioxide (Dorling et al., 2017). Agricultural 

logistics distribution was characterized by high energy consumption and carbon emissions. Economic benefits 

and environmental impacts needed to be considered in this study.  
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 Increasing attention had been paid to agricultural logistics distribution (Cheng et al., 2020). Therefore, 

reducing the cost of agricultural logistics distribution through agricultural logistics distribution path planning has 

been a focus of research. 

 An UAV is an aircraft that does not carry a pilot and is equipped with an autonomous flight control system. 

It has the characteristics of small size, low risk and easy to use, and is widely applied in military and civil fields. 

With the rapid development of the e-commerce industry, the pressure of logistics terminal distribution has also 

increased. Especially in mountainous areas, factors like scattered population and complex terrain lead to high 

logistics costs and long delivery time. In view of this situation, logistics drones came into being (Torabbeigi et 

al., 2020). However, China’s UAV logistics is still in its infancy, and there have been some problems in the 

marketization of UAV logistics, bringing many challenges to the sustainable development of UAV agricultural 

logistics. By applying the emerging thing of drones to the field of agricultural logistics that was closely 

associated with life, the public inevitably questioned and worried about the safety of this new technology 

(Figliozzi et al., 2017). In addition, the high investment in technology research and development, personnel 

training and supporting system establishment of UAV agricultural logistics distribution also sets a higher 

threshold for enterprises to carry out UAV agricultural logistics business. The relevant policies and regulations 

and supervision mechanism system of UAV logistics are still in the stage of exploration and improvement. This 

study investigates the path planning of UAV agricultural logistics distribution from two aspects including the 

development of UAV technology and the standardized operation of UAV logistics. 

 Currently, few studies focus on the trajectory planning of logistics UAVs. UAV path planning was a 

satisfactory space flight path for UAV to successfully complete the flight mission by comprehensively 

considering topography, various threats, energy and fuel consumption and many other factors (Bug et al., 

2018). At present, there were various path planning optimization algorithms, such as particle swarm 

optimization (Hong et al., 2021), ant colony algorithm (Buzzega et al., 2022), fish swarm algorithm (Song et 

al., 2021), and artificial potential field method (Chang et al., 2018). Among them, ant colony optimization (ACO) 

was widely used due to its strong robustness and fast search speed, while it revealed the disadvantages of 

low search efficiency, making it easy to fall into local optimum (Choi et al., 2017). To address the problem of 

path smoothing, Freitas et al. (2018) considered the influence of the number of UAV turns in the heuristic 

function, enhancing the global search ability of the algorithm and improving the smoothness of the path. 

However, the improved algorithm still has the disadvantages of slow initial convergence speed, making it easy 

to fall into local optimum (Freitas et al., 2018). Yang et al. (2015) proposed an ant colony algorithm with 

improved pheromone update rules based on the shortest path target. The performance of the algorithm is 

improved regarding running time and convergence speed. Nevertheless, only the shortest path is considered, 

and other factors including the safety and smoothness of the UAV track are not taken into consideration. Freitas 

et al. (2020) proposed a guiding factor considering the distance from the node to the target node and the 

distance from the node to the starting node. Through improving the guiding factor of the algorithm, the guiding 

effect of the heuristic function is enhanced. However, the algorithm is easy to fall into local optimum due to the 

influence of the initial distribution of pheromones (Freitas et al., 2020). Petrovska et al. (2013) proposed a 

method using geometric optimization. The adaptive parameter adjustment method is employed to improve the 

search ability of the ant colony algorithm and the interaction ability between individuals, effectively improving 

the traditional ant colony algorithm. Petrovska et al. (2013) proposed a geometric optimization method and 

adopted adaptive parameter adjustment method for improving the search ability and interaction ability of ant 

colony algorithm, which effectively improved the traditional ant colony algorithm’s slow convergence speed, 

making it easy to fall into local optimality. However, the problem of slow search speed still existed in the initial 

stage of the algorithm. Williams et al. (2012) plan drone delivery within a fixed service radius from the 

warehouse. Each package has a customized delivery time and deadline. To minimize the number of drones, 

the scheduling decision support model and genetic algorithm are used to solve. Dell'Amico et al. (2021) 

considered the economic cost, delay penalty, safety and reliability, carried out the task allocation planning of 

multi-UAV cooperative distribution, and improved the quantum particle swarm optimization algorithm to solve 

the problem. The research on improving ant colony algorithm mainly includes: Wang et al. (2023) initialized 

the initial number of agricultural handling robots by scanning method, and the geometric center of the sub-path 

node was set as a virtual node. Then, the improved ant colony algorithm with embedded genetic operator was 

applied to solve the optimal path of connecting virtual nodes and the optimal result of sub-paths. Chu (2023) 

improved the problem that the classical artificial potential field method failed to reach the end point and local 

lock-in in agriculture through introducing the method of intermediate point and target relative distance.  
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 Subsequently, the improved artificial potential field method was combined with the traditional ant 

colony algorithm, and the ant colony algorithm exerted a major role in the later period with the increasing 

pheromone concentration. Fan (2023) proposed an improved PSO algorithm based on A* algorithm, 

introduced a nonlinear convergence factor balance algorithm with global search and local development 

capabilities into the traditional PSO algorithm, and adopted population initialization for enhancing population 

diversity, and thus the improved PSO algorithm exhibited stronger model solving capabilities. 

 Considering the establishment of the energy consumption formula, restricting UAV cruising range 

and so on, Ke et al. (2014) established a drone delivery model from the perspective of time and budget, 

considered energy consumption and load constraints, and applied simulated annealing algorithm to solve 

the model. Zhou et al. (2019) applied the nonlinear energy consumption function to the modelling of multi -

trip UAV routing problem with time windows, and designed a branch cutting algorithm to solve the problem. 

Jung et al. (2021) obtained the formula of UAV battery energy consumption by testing UAVs, and applied 

the formula to path constraints to address the multi-package delivery problem, aiming to minimize the 

number of UAVs. Agatz et al. (2018) performed targeted research on the MD4-3000 series of drones and 

applied them to solve distribution problems many times. Zheng et al. (2020) established a maximum 

coverage model of a limited charging point, uniquely allocating the demand point to the nearest charging  

facility, and constraining the flight path between the charging points, and thus the generated distribution 

network is topological. Boccia et al. (2021) established a multi-level location model for warehouses and 

charging facilities in order to minimize the total cost, and improved the genetic algorithm with greedy 

search to solve the model. Liu et al. (2016) applied the maximum coverage model of limited facility points 

to the scenario of UAV rescue material delivery, and established a three-stage heuristic (3SH) model to 

address the facility center location problem, material allocation problem, and the number of required UAVs 

in stages. Bouman et al. (2018) developed a UAV distribution optimization model for medical items, 

including charging station location, medical item supplier assignment for suburban clinics, and scheduling 

trips and distribution routes for drones to minimize the total service time. Boysen et al. (2021) aimed at 

maximizing the coverage demand point and performed the location of UAV charging facilities in two steps. 

 Concerning the shortcomings of the above research, this study further carried out research and 

established an agricultural logistics distribution route planning model considering the mileage limit of drones. 

To evaluate and make full use of battery energy, the energy consumption formula is established. The path 

planning is conducted with the lowest energy consumption as the goal. Considering that the weight of general 

express parcels is within 5 kg, and the load of drones commonly used in terminal distribution is 20 kg, this 

study investigates multi-package distribution considering the mileage limit of drones. This model improves the 

actual loading rate of drones, which contributes to saving space and resources and improving distribution 

efficiency. 

 

MATERIALS AND METHODS 

Problem Description 

This study describes the scene of remote agricultural logistics distribution services in places including 

mountainous areas, islands, and grasslands and other places. In actual operation, agricultural logistics service 

providers provide drone distribution services for remote rural areas, with towns as distribution centers and 

villages as receiving units. Starting from the distribution center, the drone delivers the goods to the designated 

collection point in each village (hereinafter referred to as the demand point). In this study, the problem of 

agricultural logistics distribution path planning considering the limitation of UAV cruising range is investigated. 

Under the requirement that all demand points are covered, the total energy consumption of distribution is the 

lowest, and multiple UAV distribution tasks are obtained after solving the problem.  
Problem hypothesis and parameter description 

Problem hypothesis  

 (1) Only a single distribution center is considered to provide agricultural logistics distribution services for 

multiple demand points within the distribution range. 

 (2) All UAV models remain the same, and the battery weight does not change during the flight of the UAV. 

 (3) This study only considers the energy consumption of UAV under ideal conditions, without considering 

the influence of weather and other factors. 

(4) The power consumption of UAV rising and falling is not calculated, respectively. Considering the 

battery safety factor μ=1.25, the safe power of UAV is set to 80% of the maximum power that is: Q Q = max / . 
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(5) Assuming that each demand point can only be delivered by one UAV, while one UAV can serve 

multiple demand points. 

(6) The multi-package delivery model of UAV is defined by directed graph G=(V, A), and the set of points 

is =   'V D C R  and (i, j)ϵV. Distribution center D={v0}, and the set of demand points C={v1, v2, …, vn}. 
 

Parameter declaration 

 The relevant parameters of the agricultural logistics distribution path planning model considering the 

mileage limit of the UAV are shown in Table 1. 

Table 1 
Model parameter description 

Parameter Parameter definition 
Parameter 

units 

D 
The set of distribution centers, denoted by the following index o in the decision 
variable 

— 

C The set of demand points — 

R Set of candidate charging points — 

yj 
If the candidate charging point j is determined to be the charging point, then  yj = 1, 

otherwise  yj = 0 
— 

xij 
If the demand point i is uniquely assigned to the facility point j,  j ϵ D  R, then;  

 xij =1, otherwise  xij =0 
 

dij The distance between points i and j km 

ci0 The total distance of the path from the demand point i to the distribution center km 

H Unmanned aerial vehicle full range km 

λ1 

The distance from the candidate facility point to the distribution center does not 

exceed λ1 times of the full load range of the drone,  =1 0.8  
— 

λ2 
The coverage of the facility point to the demand point is not more than λ2 times the 

full range of the UAV,  λ2=0.4 
— 

f The energy consumed per unit distance of horizontal flight W.h 

mt Net weight of UAV without battery and cargo kg 

mb Battery weight of UAV kg 

ml The weight of cargo carried by UAV kg 

g acceleration of gravity N/kg 

d unit distance m 

  energy transfer efficiency — 

v  The ratio of lift to drag is a function of flight speed. — 

f(m1) 
The energy consumed per unit distance in horizontal flight when the cargo weight is 

m1 
W.h 

  Formula parameters — 

  Formula parameters — 

R’ The set of charging points and virtual charging points - — 

V The set of all vertices, = ',( , )V D C R i j V  — 

K The set of UAVs, k K  — 

Wi The demand for node i, i C  kg 

mik The weight of the cargo when the kth drone leaves point i, i V k K,   kg 

qik The remaining power of the kth drone when it leaves point i, i V k K,   W.h 

tij The flight time of UAV from node i to node j h 

Tk Time spent on the delivery of the kth drone h 

xijk When the kth UAV passes through node j from node i,  xijk =1; otherwise  xijk =0 — 

N Number of drones at distribution centers, N K=  — 

W Maximum load capacity of UAV kg 

Qmax Maximum power of UAV W.h 

Q Maximum safe power of UAV, /Q Qmax =  W.h 

  Battery safety factor, 1.25 =  — 

  The residence time of the UAV at the demand point or the charging point h 

v UAV constant flight speed m/s 
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UAV agricultural logistics distribution model 

UAV energy consumption formula 

 In this study, the energy consumption of UAV in horizontal flight state is defined as Equation (1): 

m m m g
f d

3600

t b l

v

( )

 

+ +
=                                                         (1)

 
 When the net weight and battery weight of the UAV are regarded as constant values, the energy 

consumption rate of the UAV per unit distance is only associated with the load capacity. The energy 

consumption Equation (1) is improved to obtain a new energy consumption Equation (2). 

1 1( ) ( )f m d f m d = + =                                                (2)
 

  is shown as Equation (3). 

t b

v v

1 1
α=g , β=(m +m )g

3600J η 3600J η
                                     (3) 

UAV agricultural logistics distribution model considering endurance mileage 

The combination of agricultural logistics distribution tasks is solved with the least total energy 

consumption and the delivery time of the corresponding tasks. 

Min ( )
ik ij ijk

k K i V j V

f m d x
  

                                                 (4) 

 The meaning of Equation (4) is to minimize the total energy consumption of distribution. Among them, 

ikf ( m )  indicates the energy consumption per unit distance of flight when the load capacity of the UAV is mik. 

 Constraint conditions are shown as follows: 

ijk

k K j V

x i C
 

=   1,                                                        (5)

 

1, ,
ijk

j V

x i R k K



                                                   (6)

 

0, ,
jik ijk

j V j V

x x i V k K
 

− =                                      (7) 

( , ) ( )

1, , ,
ijk

i j E U

x U U R C U k K


 −                                (8) 

 Equation (5) suggests any requirement point, and there is only one UAV to visit once. Equation (6) 

indicates that for any charging point, the same UAV is accessed at most once. Equation (7) indicates that for 

any node, the number of visits and departures of the same UAV is equal. Equation (8) represents the sub-loop 

constraint, that is, no loop can appear in any non-empty subset composed of charging points and demand points. 

 The number of UAV departures is constrained to be: 

1,
ojk

j R C

x k K
 

                                                          (9) 

 Equation (9) limits the number of departures of each UAV to at most 1. The bearing weight constraint 

is presented as follows: 

,
ok j ijk

i V j C

m w x k K
 

=                                                  (10)

 
,

ok
m W k K                                                                 (11)

 

(1 ) ( ), ,
jk ijk jk ijk ik j

m x m x m w i V j C R= − + −                        (12) 

 Equation (10) calculates the weight of each UAV 's cargo when it departs from the distribution center. 

Equation (11) constrains the weight of each drone's cargo when it departs from the distribution center. 

Equation (12) indicates that for any node j (  j C R ), the UAV flies from node i to node j, and the weight of 

the cargo when starting from node j is equal to the weight of the cargo when starting from node i minus the 

demand for node j.  

The aim of this study is that the flight distance of the agricultural distribution UAV is affected by the 

power of the UAV, and the flight distance constraint is: 

(1 ) ( ( ) ), , ,
jk ijk jk ijk ik ik ij

q x q x q f m d i V j C k K= − + −                              (13)
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', ,
ik

q Q j D R k K=                                                        (14)
 

'( ( ) ( ) ) 0, , ,
ijk ik ik ij ik j jr

x q f m d f m w d i V j C R k K− − −                    (15) 

 Equation (13) indicates that for any demand point j, if the UAV flies from node i to node j, the electric 

quantity when starting from node j is equal to the electric quantity when starting from node i minus the flight 

energy consumption between nodes i and j. Equation (14) suggests that for any facility point, the electric 

quantity when the UAV leaves is equal to the maximum safe electric quantity. Equation (15) indicates that if 

the kth UAV flies from node i to node j, the power of the UAV leaving node i should be enough to support the 

UAV to fly from node i to node j, and then from node j to the nearest facility point r from j. When j is a demand 

point, there must be a corresponding nearest facility point r . When the node j is a charging point, the nearest 

facility point r is the node j itself. 

 Equation (16) presents the calculation of the total flight time of each UAV: 

( ) , , ,
k ij ijk

i V j V

T t x i V j V k K
 

= +                                        (16) 

Algorithm Design 

 Ant colony algorithm is a heuristic algorithm, which is essentially an iterative algorithm based on the 

positive feedback. There are two key node steps in the ant colony algorithm. One is the selection of the next 

node, and the other is the pheromone update rule. The common strategies for node selection include random 

selection, and roulette. In addition, the pheromone update strategy also has different methods. The original 

ant colony algorithm basically uses the global update strategy, that is, when all ants complete the search, the 

pheromone is updated. Subsequently, the elite strategy is introduced into the elite ant colony algorithm to 

improve the convergence. Under the elite strategy, there is no need to wait for all ants to complete the search, 

and only the pheromone is updated on the path of the optimal ants in each loop. Based on the basic ant colony 

algorithm, the maximum and minimum ant colony algorithm limits the concentration range of pheromone to a 

certain range, therefore increasing the possibility of searching for the optimal solution. 

The core mechanism of ant colony algorithm 

 The basic ant colony algorithm is a kind of swarm intelligence bionic algorithm inspired by the path 

finding during the process of ant foraging. The basic idea of the algorithm is that the path of the ant indicates 

the feasible solution of the problem to be optimized, and all the paths of the whole ant population constitute 

the solution space of the problem to be optimized. The content of pheromone is determined by the length of 

the path. It indicates the longer the path, the lower the content of pheromone. The path selection of ants 

depends on the content of pheromone. Besides, it suggests the higher the content, the greater the probability 

that the path is selected. With the passage of time, most of the ants will eventually concentrate on a shorter 

path. Then, the path is the optimal solution of the optimization problem. The direction of each ant 's progress 

is mainly related to two factors. One is pheromone, and the other is heuristic information. It shows the higher 

the content of pheromone on the path, the greater the possibility of ants choosing the path; the heuristic 

information is to guide each ant to determine the direction of the next step. Therefore, the key of ant colony 

algorithm lies in the construction of pheromone update model and heuristic function. The ant determines the 

direction of the next step according to the transition probability, which is expressed as following: 

, ,

, ,,

( ) ( )
, allowed

( ) ( )( )

0, allowed

i

i j i j

i
m

i s i si j
s allowed

i

t t
j

t tp t

j

 

 

 

 


        


   =     

 

                           (17) 

, , ,

1

( 1) (1 ) ( ) ( )
M

m

i j i j i j

m

t t t   
=

+ = − +                                                 (18) 

where  , ( )i j t  is the heuristic function, usually taking , ( ) 1/
i j ij

t d =  (d refers to the Euclidean distance of the 

center of two nodes i, j ).  , ( )i j t  is a pheromone. 
iallowed  is the set of feasible adjacent nodes at node i; m is 

the ant label; i denotes the current position node label; j is the node label of the next position to be transferred; 

t suggests the current number of iterations; α and β suggest the relative importance of pheromone and heuristic 

factors, respectively. 
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 Pheromone is the key to the construction of ant colony algorithm. It indicates the shorter the path of 

ants, the higher the pheromone concentration, and the more it can play a guiding role for ants. With the 

passage of time, the pheromone will also evaporate, and thus it is essential to establish a pheromone update 

model. Common pheromone update models include ant week model, ant quantity model and ant density model. 

 
M

m

i j i j i j

m

t t t, , ,

1

( 1) (1 ) ( ) ( )   
=

+ = − +                                                 (19) 

 

0

mm

i j

If m ants go through the path ( i, j )Q L , 
t

, others



 = 


,

/
( )                          (20) 

 
where   is the pheromone volatilization factor, Q refers to a pheromone constant, Lm is the total length of the 

path passed by the m ant in this cycle, and m represents the total number of ants. 
 

 Generally, the ant colony algorithm program design is composed of two nested loops. The external 

cycle is a cycle of iterations, which is used to simulate the multiple explorations of the ant colony system. The 

internal loop is the loop of the single ant search process in the ant colony system, as displayed in Fig. 1. 

 

start

K < number of 

remaining customers
K=k+1

The loading capacity is 

less than the remaining 

customer requirements.

The load is greater 

than the demand

Set the starting 

position of the UAV

Select the next node 

according to the 

selection method and 

store the information

Calculate the next 

node selection 

probability

The next node 

selection 

probability is 0.

end

Y N

Y
N

Y

N

 
Fig. 1 – The basic process of ant colony algorithm 

 

 

 Considering the limitation of UAV load, when the cargo capacity of a single UAV fails to satisfy the needs 

of the next target customer, the UAV needs to return to the distribution center halfway. Its internal contains a 

cycle, that is, whether the UAV completes the traversal of all target customer nodes. The rule of UAV traversing 

the target customer is displayed in Fig. 2. 
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Whether ant i reaches 

the end point

Start

Environment 
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pheromone update

Next iteration
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number of iterations / find 

the optimal 

solution

Map compensation function is 

introduced to optimize the 

map.

Initialize information 

concentration
Start

Continue to find until 

the path is found
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Fig. 2 – Traversal rules of agricultural logistics distribution UAV 

 
Parameter design of improved ant colony algorithm 

 The optimization performance of ant colony algorithm is affected by key parameters including heuristic 

factors and pheromone volatilization rate. The parameters are closely related and exert a decisive role in the 

global search ability and solution efficiency of the ant colony algorithm. The ant colony algorithm uses fixed 

parameters, which has certain limitations. The information heuristic factor is set to α, and the empirical value 

range of the expected heuristic factor   is [ 0,5 ]. The value interval of pheromone volatilization rate ρ is [ 0,1 ]. 

The parameters are coupled with each other and are associated with the research problem. When the scale 

of the problem to be dealt with is relatively large and the pheromone volatilization rate ρ is small, the random 

performance and global search ability of the algorithm will increase, and the overall convergence of the 

algorithm will be weakened. If ρ increases, the random performance and global search ability of the algorithm 

will be reduced, and the convergence speed of the algorithm will be slowed down. If the information heuristic 

factor   is too large, the randomness of the search is weakened, making the ants’ search prematurely limited 

to local optimum. With the increase of the expected heuristic factor  , the ants are more likely to choose the 

local shortest path at a local point, which leads to the weakening of the randomness of the ants’ search for the 

optimal path, making it easy to fall into local optimum. By contrast, it indicates the smaller the heuristic factor, 

the stronger the search ability, but the convergence decreases. 

 The idea of variable parameter has been widely used in control engineering including piecewise PID 

control, and parameter adaptive control. In summary, a simple idea is proposed, that is to ensure its search 

ability at the beginning of the algorithm iteration, maintain equilibrium in the middle of the algorithm iteration, 

and ensure its convergence performance at the end of the iteration. To realize the above ideas, the hyperbolic 

tangent function is introduced, and its mathematical expression is: 
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( ) ( ) ( )− −= − +tanh /x x x xx e e e e                                                 (21)
 

 In the initial stage of the loop search, to search the global optimum in a wider range,   is controlled 

at a lower level. The pheromone on the path is low, and thus the information heuristic factor   is at a low level. 

In order to prevent directly falling into local optimum, the expected heuristic factor   is also at a low level. At 

the end of the loop search, both ρ and   are controlled at a higher level, maintaining a faster convergence 

speed. 

 The specific mathematical expression is shown in Equations (22)-(24): 

max max min max
tanh c Nc Nc   = − − −( ) [ ( )]                                         (22) 

 

min max min max( ) tanh[ ( ))c Nc Nc   = + − −                                         (23) 

 

min max min max( ) tanh[ ( ))c Nc Nc   = + − −                                           (24) 

 

where c  , c   and c   are adjustable parameters to control the range of   ,    and   , Ncmax is the set 

maximum number of iterations, Nc refers to the current number of iterations, max
 and min

 are the upper and 

lower limits of  , max
 and min

 represent the upper and lower limits of  ; max
 and min

 are the upper and 

lower limits of  . 

 

 To lower the computational pressure, the information heuristic factor α and the expected heuristic 

factor   are rounded. The rounding rules can be rounded or intercepted based on the rounding rules. After 

the rounding rules are introduced, the mathematical expressions of Eqs. 22 and 23 are shown in Eqs. 25 and 

26, respectively: 

c Nc Ncmax max min maxRound( ( )tanh[ ( )]}   = − − −
                                 

(25) 

 

max max min max Round{ ( ) tanh[ ( )]}c Nc Nc   = − − −                                 (26) 

 

RESULTS 

Experimental environment and parameter settings 

 In this study, Intel i7 processor and Matlab2014 b are used for experiments. The mutation probability 

of genetic algorithm is 0.1, the crossover probability is 0.9, and the genetic generation gap is 0.7. In the ant 

colony algorithm, the important factor of pheromone is 1, the constant coefficient Q is 1, the volatilization factor 

of information is 0.1, and the important factor of heuristic function is 5. The discount coefficient of the 

reinforcement learning algorithm is 0.9, and the learning rate is 0.2.  

 

 The three cost parameters are presented in Table 2. 

Table 2 
Cost parameter table 

Parameter type check Parameter name Taking values 

Underlying cost The basic cost of sending UAVs 500 yuan 

Transportation cost Unit distance loss of UAV 6 yuan 

 
Time cost 

UAV running speed 200 m/min 

UAV loading and unloading time 5 min 

Maximum carrying capacity of UAV 20 kg 

 

 With Zhukou Town Center and other 20 villages in Taining County, Sanming City, Fujian Province as 

the research object. This study explores the problem of agricultural logistics distribution path planning 

considering the limitation of UAV endurance mileage. The location, demand, time window requirements, and 

basic demand information for the required service time of Zhukou Town Center and other 20 villages are shown 

in Table 3. Among them, '0' represents the distribution center, and '1 ~ 20' represents the village needing to be 

served. 
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Table 3 
Customer basic needs information 

Coding 
Coordinate 

X (km) 
Coordinate 

Y (km) 
Coordinate 

Z (m) 

Magnitude 
of 

demand 

（kg） 

L*w*h 
(mm) 

Expected 
time 

window 
(h) 

Acceptable 
time 

window 
(h) 

Service 
time 
(min) 

A 0.000 0.000 0 0 0 0 0 0 

B1 2.477 3.462 423 3 100*80*30 8:00-9:00 8:00-16:00 10 

B2 1.119 3.301 291 2 100*60*30 
9:00-
10:00 

8:00-16:00 10 

B3 2.819 1.753 155 2 100*60*30 
10:00-
11:00 

8:00-16:00 10 

B4 4.711 3.044 497 2 100*60*30 
10:00-
11:00 

8:00-16:00 10 

B5 4.279 0.227 311 4 120*80*30 
10:00-
11:00 

8:00-16:00 10 

B6 0.181 3.264 325 1 80*40*30 8:00-9:00 8:00-16:00 10 

B7 4.679 4.589 304 2 100*60*30 
10:00-
11:00 

8:00-16:00 10 

B8 0.662 0.380 54 4 120*80*30 
9:00-
10:00 

8:00-16:00 10 

B9 3.520 4.537 104 3 100*80*30 
11:00-
12:00 

8:00-16:00 10 

B10 1.434 2.430 308 4 120*80*30 
10:00-
11:00 

8:00-16:00 10 

B11 4.027 4.337 321 4 120*80*30 
9:00-
10:00 

8:00-16:00 10 

B12 4.960 4.313 489 2 100*60*30 
11:00-
12:00 

8:00-16:00 10 

B13 2.193 2.969 438 3 100*80*30 8:00-9:00 8:00-16:00 10 

B14 0.063 4.726 485 4 120*80*30 
11:00-
12:00 

8:00-16:00 10 

B15 0.524 2.276 241 5 120*100*30 
11:00-
12:00 

8:00-16:00 10 

B16 3.336 2.250 397 5 120*100*30 
9:00-
10:00 

8:00-16:00 10 

B17 0.649 2.002 231 1 80*40*30 
10:00-
11:00 

8:00-16:00 10 

B18 2.043 4.915 365 4 120*80*30 8:00-9:00 8:00-16:00 10 

B19 1.689 4.540 70 5 120*100*30 
11:00-
12:00 

8:00-16:00 10 

B20 2.073 4.743 431 3 100*80*30 
9:00-
10:00 

8:00-16:00 10 

 

 The technical parameters of the agricultural logistics distribution UAV were presented as follows: the 

weight of the empty aircraft was 42.5 kg (excluding batteries), 65 kg (including double batteries), the large 

take-off weight was 85 kg (standard cargo box, near sea level), the shape size was 2000 mm, the wheelbase 

was 2200 mm, the shape size was 1590 mm, the width was 1900 mm, and the height was 947 mm (arm 

expansion, blade folding).  

Experiment and comparative analysis 

 In this study, an improved ant colony algorithm was employed to solve the agricultural logistics 

distribution path planning model considering the limitation of UAV cruising range. The maximum number of 

iterations was set to 200, and the cost of agricultural handling UAV was 300 yuan. A satisfactory solution could 

be obtained by solving the model, that was, three mobile drones were needed to complete the storage and 
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unloading tasks of agricultural products. The total travel distance of the drone was 55.086 km, and the total 

cost was 4055.09 yuan. The algorithm took 349.47 seconds. The improved ant colony algorithm path diagram 

was shown in Fig.3. The convergence curve of the improved ant colony algorithm embedded in the genetic 

algorithm was shown in Fig.4, and the calculation results were presented in Table 4. 

 

                     
Fig. 3 – The path diagram of genetic algorithm           Fig.4 – Convergence curve of genetic algorithm 

 
Table 4 

Optimal service path. 

Service path Actual carrying capacity Load limit 
Capacity 
utilization 

0→6→13→1→18→20→2→17→0 17 20 85% 

0→10→3→5→4→7→12→0 15 20 75% 

0→8→16→11→9→0 15 20 75% 

0→19→14→15→0 14 20 70% 

 

 To further demonstrate the effectiveness of the improved ant colony algorithm, this study also designed 

a traditional ant colony algorithm to solve the model. In the case of constant initial cost and parameters, solving 

the agricultural UAV path optimization model required 5 mobile UAVs, and the total travel of the UAV was 59.85 

km. The total cost was 5059.85 yuan, and the algorithm took 365.31 seconds. The path diagram of the 

traditional ant colony algorithm was shown in Fig.5. The convergence curve of the traditional ant colony 

algorithm was displayed in Fig. 6, and the calculation results were presented in Table 5. 

Table 5 
Optimal service path. 

Service path Actual carrying capacity Load limit Capacity utilization 

0→6→18→1→13→10→0 15 20 75% 

0→2→20→11→16→17→0 15 20 75% 

0→3→5→4→7→12→9→0 15 20 75% 

0→14→19→15→0 14 20 70% 

0→8→0 4 20 20% 

      
 
Fig. 5 – Path diagram of traditional algorithm                Fig. 6 – Convergence curve of traditional algorithm 
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Compared with the traditional ant colony algorithm, the improved ant colony algorithm embedded with 

genetic operator exhibited strong exploration and convergence, and the value of the objective function was 

better. The comparison of the two algorithms was shown in Table 6. 

Table 6 
Comparison of two algorithms. 

Algorithm 
Number of 

drones 
Average full 

Distance of 
run(km) 

Total cost 
(yuan) 

The algorithm takes 
time (s) 

improved ant colony 
algorithm 

4 76.25% 55.09 4055.09 349.47 

traditional ant 
colony algorithm 

5 63% 59.85 5059.85 365.31 

 

 It can be observed from Table 6 that the improved ant colony algorithm was superior to the traditional 

ant colony algorithm regarding the number of UAVs, average full load rate, driving distance, total cost and 

algorithm time. The traditional ant colony algorithm required 5 UAVs to complete the agricultural logistics 

distribution task considering the UAV 's cruising range limit, while the improved ant colony algorithm only 

needed 4 machines to complete the same task, with the efficiency being improved by 20%. Regarding full load 

rate, the average full load rate of the traditional ant colony algorithm agricultural UAV was 63 %, while the 

average full load rate of the improved ant colony algorithm to complete the same task was 76.25%, and the 

average full load rate was increased by 13.25%. Concerning the driving distance of the UAV, the total distance 

of the traditional ant colony algorithm agricultural UAV was 59.85 km, while the total distance of the improved 

ant colony algorithm to complete the same task was 55.09 km. In terms of the driving distance of the UAV, the 

total cost of the traditional ant colony algorithm agricultural UAV was 5059.85 yuan, while the total cost of the 

improved ant colony algorithm to complete the same task was 4055.09, regarding algorithm time, the 

convergence time of the traditional ant colony algorithm was 365.31 seconds, while the convergence time of 

the improved ant colony algorithm was 349.47 seconds. 

 

CONCLUSIONS 

 To conclude, this study mainly investigated the path planning problem of agricultural logistics distribution 

for express parcel delivery by UAV in remote areas, and established the path planning model of agricultural 

logistics distribution considering the mileage limit of UAV. By comparing the optimal path of agricultural 

distribution without considering the mileage limit of drones and considering the mileage limit of drones, this 

study established a mathematical optimization model to minimize the total distribution cost of agricultural 

logistics under the constraints of customer demand for agricultural logistics, the maximum carrying capacity of 

agricultural drones, customer time window requirements, and drone endurance mileage restrictions. Aiming at 

the problems of slow convergence speed and the easiness to fall into local optimum of ant colony algorithm, 

the idea of variable parameters was introduced into ant colony algorithm. The parameters were automatically 

adjusted in the iterative process of the algorithm through hyperbolic tangent function to achieve the purpose 

of strong global search ability in the early stage of the algorithm and significant improvement of convergence 

speed in the later stage of the algorithm. Through simulation and comparative experiments, the effectiveness 

of the model and algorithm was verified, which could provide scientific method support for the cold chain 

logistics industry to achieve a win-win situation of economy and environmental protection. Additionally, the 

introduction of hyperbolic sine function was not only suitable for ant colony algorithm, but also could be 

introduced into optimization algorithms which were greatly affected by parameters. After introducing the 

hyperbolic sine function, the upper and lower limits of the algorithm parameters needed to be firstly determined. 

Therefore, how to quickly determine the upper and lower limits of the parameters was a work worthy of study. 

Meanwhile, the mechanism of the influence of ant colony algorithm parameters on its performance was still 

unclear and lacked systematic mathematical theoretical support. In the future, it is necessary to conduct more 

in-depth studies on the influencing mechanism of parameters on research results.  
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