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ABSTRACT 

The farmland in the southwestern mountainous areas of China is mostly hilly terrain with multiple obstacles, 

and traditional manual spraying operations are time-consuming and laborious. The use of agricultural plant 

protection unmanned aerial vehicle (UAV) can reduce the problem of high manual operation costs. To solve 

the problem of optimizing the spraying operation path of plant protection UAVs, this study focused on the 

complex agricultural environment in the southwestern mountainous areas of China. First, a 2D agricultural 

map model with multiple obstacles was constructed using MATLAB. Second, the optimization requirements 

for job paths were analyzed, and a path optimization model based on the grid graph method was studied, 

aiming to shorten the total flight distance and reduce the number of paths. By applying the genetic algorithm, 

efficient optimization of the spraying path of plant protection UAV was carried out. Simulation verification 

showed that the optimized path significantly shortened the flight distance, accelerated convergence speed, 

and effectively avoided local repeated paths, thereby greatly improving the spraying efficiency of plant 

protection UAV. 

 

摘要 

中国西南山区农田多为含多个障碍物的丘陵地貌，传统人工喷洒作业费时费力，借助农业植保无人机可以减少

人工作业成本高的问题。为解决植保无人机喷洒作业路径优化问题，本研究针对中国西南山区复杂农田环境，

首先利用 MATLAB 构建了含多障碍物的二维农田地图模型。随后，分析了作业路径优化需求，研究了基于网

格图法的路径优化模型，旨在缩短总飞行距离并减少路径数量。通过应用遗传算法，对植保无人机喷洒路径进

行了高效寻优。仿真验证显示，优化路径显著缩短了飞行距离，加快了收敛速度，有效避免了局部重复路径，

从而大幅提升了植保无人机的喷洒作业效率。 

 

INTRODUCTION 

The application of agricultural plant protection unmanned aerial vehicle (UAV) in foreign countries was 

first introduced in the United States. The fixed wing UAV produced by Huff Daland Company in 1932 has 

already been used in the agricultural field. According to statistics, over 9,000 UAVs are used in agricultural 

fields in the United States, and over 60% of them use UAVs to assist in planting management work. However, 

American agricultural UAVs mainly rely on fixed wing aircraft and helicopters, combined with advanced 

remote sensing and flight control technology, which is in line with the flat terrain and large-scale planting 

characteristics of their farmland. Among Asian countries, Japan was one of the earliest to apply UAVs to 

agricultural production. In 1958, Japan began using manned UAVs to control pests, diseases, and weeds in 

farmland. In 1983, the method of manned and unmanned driving working together on farmland was 

proposed. By 1987, the world’s first agricultural UAV had been born in Japan, making it the first country to 

use crop protection UAV for crop protection operations (Gago J. et al., 2020). Compared with large-scale 

farmland in the United States, Japan has a smaller per capita arable land area and complex terrain. In 

addition, the significant reduction in agricultural population and the high cost of manual labor caused by hilly 

terrain make the development of agricultural UAV in Japan relatively large. Japan’s plant protection UAVs 

mainly rely on oil powered unmanned helicopters, and they have established a comprehensive plant 

protection service system around unmanned helicopters (Xu C. et al., 2020). They have rich experience in 

the research and management of specialized pesticides for UAV.  
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The labels of their specialized pesticides include parameters such as weather restrictions, flight 

altitude, spray volume, and drift volume, making it convenient for the promotion and use of drugs. 

The application of UAVs in China’s agricultural sector was relatively late compared with the United 

States and Japan. In 2010, the first commercial plant protection UAV appeared. In 2014, it began to enter a 

stage of rapid development. At present, China has over 100,000 types of agricultural crop protection UAVs, 

including fixed-wing and rotary-wing UAVs, with multi-rotor UAV being the main type in recent years. The 

well-known enterprise DJI UAV Company established DJI Agricultural Company in 2015, specializing in the 

agricultural field, and launched the T series of agricultural UAV. Its latest T50 can achieve the replacement of 

spraying and broadcasting modules to adapt to agricultural application scenarios. Its load capacity can reach 

up to 50 kg, and the dual atomization spraying system can make the droplets uniform and fine. When 

operating on fruit trees, centrifugal nozzles can be added to increase the spraying area and improve the 

adhesion rate of leaf back medicine. By carrying an active phased array radar and binocular vision system, 

terrain prediction and obstacle avoidance can be achieved. Some other companies have also launched 

similar plant protection UAVs (Zhang H., et al., 2021). 

Given that the main rice planting areas in China are concentrated in the south, the terrain is mainly 

irregular mountains and hills. The traditional method of spraying rice paddies mainly relies on individual 

farmers carrying portable equipment, which has the characteristics of high manual labor intensity and low 

work efficiency. With the development of UAV technology, using agricultural plant protection UAV for spraying 

operations has become a trend in modern agriculture. Compared with traditional methods of plant protection 

operations, plant protection UAVs not only have the characteristics of small size, easy portability, high safety, 

and the ability to hover freely, but they also can vertically take off and land in small work areas, allowing 

UAVs to perform spraying operations on various terrains. Therefore, the rational utilization of agricultural 

plant protection UAV has become a hot topic worthy of research in the current field of agricultural plant 

protection. 

As the application scope of plant protection UAV continues to expand, the working environment faced 

by UAVs will gradually become complex, and the number of tasks will continue to increase, which may lead 

to some problems in path planning, such as missed or repeated operations, high energy consumption, long 

working paths, and inability to effectively avoid obstacles. Path planning is an essential part to improve the 

operational efficiency and reduce losses of plant protection UAV. Reasonably planning the operation path is 

the key to achieving safe and efficient operation of plant protection UAVs. In this process, factors such as 

terrain characteristics, vegetation information, and aircraft performance should be combined to develop path 

planning algorithms suitable for different terrains and farmland types by combining plant protection UAV with 

artificial intelligence to achieve efficient and energy-saving plant protection operations. This not only 

effectively reduces labor costs in agricultural production but also helps reduce pesticide spraying omissions 

and repetitions, thereby improving agricultural production efficiency and quality and ensuring food security. 

At present, scholars at home and abroad have conducted extensive research on the path planning 

problem of plant protection UAVs. The methods used in the research can be generally divided into two types: 

one is path planning based on intelligent bionic algorithms. Commonly used examples are grey wolf 

optimization algorithm, ant colony algorithm, and genetic algorithm. These algorithms are mainly inspired by 

the intelligent phenomenon of natural biological populations and optimization algorithms were proposed by 

imitating the behavior of social animals. These algorithms are widely used in path planning research due to 

their efficient optimization speed and the need to consider too much initial information of the problem. 

Another type is path planning algorithms based on graph search, such as Voronoi diagram (Asano H.et al., 

2022), A* algorithm (Kong X. et al., 2020) and Dijkasta algorithm (Zhang and Bai, 2024). These algorithms have 

strong path search capabilities and usually obtain accurate solutions, but the computational complexity of these 

algorithms increases with the increase in environmental complexity, resulting in a significant decrease in path 

planning performance. 

When conducting plant protection operations, UAVs need to spray uniform medication on crops in the 

target area to ensure the effectiveness of the operation. In plain areas, the trajectory planning of plant 

protection UAV is full coverage path planning based on 2D planes, mainly limited by the battery capacity, 

load capacity, operation range, and plot shape of the UAV. The main focus is on indicators such as non-plant 

protection operation duration, plant protection operation trajectory length, operation repetition rate, and 

omission rate. The full coverage trajectory planning algorithm needs to plan an optimal trajectory that avoids 

obstacles and traverses the entire area within the region, mainly using the unit decomposition method and 

grid method.  
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The unit decomposition method divides the working area of the UAV into multiple accessible sub areas, 

and the coverage of each subarea becomes a simple reciprocating motion. The grid method decomposes 

environmental information into squares based on the motion speed and spraying width of the UAV. Each 

square represents a certain size of land, and it can be divided into idle or occupied squares based on whether 

there are obstacles in the land. The UAV can then find the optimal route to traverse all squares. 

At present, there are mainly two methods for 3D trajectory planning. One is to obtain the height of the 

UAV relative to the ground and predict the slope of the work site through onboard sensors without obtaining 

a 3D map in advance to ensure that the UAV always maintains a relative height with the ground and 

completes the entire operation. Some research provided accurate positioning for UAV through RTK modules 

and used laser sensors to achieve obstacle avoidance, achieving trajectory planning for UAV under hilly 

terraced fields (Wan Y. et al., 2022). Another approach is to obtain 3D terrain in advance and combine it with 

the constraints of the UAV itself for trajectory planning. And some other research rasterized the farmland 

based on its shape, height, and other information, established a 3D model of the farmland, and compared 

the planned trajectory of the same farmland on a 2D map and a 3D map. Their results showed deviations in 

the length of the trajectory and the position of the return point (Xie H. et al., 2021). Using a 2D map for 

shortest path planning and then combining the performance of the UAV with its operating altitude through a 

3D map, the waypoint position during the UAV’s flight process can be optimized, thereby ensuring the safety 

of the UAV in terrain with large altitude changes. In hilly and mountainous environments, the round-trip 

distance of plant protection UAVs in non-operational situations cannot be ignored. Reducing energy 

consumption outside of work can prolong the overall operation time of UAVs and improve their work 

efficiency (Lambertini A. et. al., 2022). 

In summary, the current path optimization problem of agricultural plant protection UAVs mostly utilizes 

various methods for 2D map drawing. It is proposed to integrate the genetic algorithm, neural network 

algorithm, particle swarm optimization algorithm, artificial potential field method, and other algorithms to 

obtain the optimal algorithm for plant protection UAVs (Liu Y. et al., 2022). On this basis, this study further 

designed a path optimization model based on the genetic algorithm for multi-obstacle avoidance scenarios in 

complex mountainous and hilly terrain to optimize the spraying operation path of agricultural plant protection 

UAV. 

 

MATERIALS AND METHODS 

The fitness function can calculate the cost of the track and compare the cost values of different tracks 

to determine the quality of the track. This article comprehensively balances three factors: track length, 

obstacle collision, and height change, and models the fitness function, as shown in formula (1): 

1 L 2 C 3 HF=φ f +φ f +φ f                                                                   (1) 

Among them: fH represents the cost of height change, fC represents the cost of obstacle collision, fL 

represents the cost of track length, F represents the cost of track, ϕ1, ϕ2, ϕ3 represents the weight values of 

different costs, and is a constant, and its proportion is related to the tasks performed by the drone. 

 

Problem Description 

The principle of path planning for commercial UAV is to traverse all points in point units to complete the 

task. The path planning of agricultural plant protection UAV is slightly different from commercial UAV. The 

purpose of the path planning is to start from the workstation, find a work path that traverses all grid lines in 

the target farmland area without crossing obstacles, and finally return to the work station. At this point, the 

task is completed. In summary, the goal of path planning for plant protection UAV is to find a Hamiltonian 

loop with the smallest weight, as shown in Fig. 1. 

 

Fig. 1 - Hamiltonian circuit schematic diagram 



Vol. 73, No. 2 / 2024  INMATEH - Agricultural Engineering 

 

650 

 

 
Fig. 2 -Schematic diagram of agricultural plant protection UAV operation coverage 

 

 

The main problem faced by agricultural plant protection UAV serving farmland in southern China is 

how to achieve obstacle avoidance. The obstacles in agricultural areas come from two aspects. One is the 

actual obstacles in the agricultural area, such as power poles and signal towers; the other is the cruising 

altitude difference caused by the undulating terrain of hilly land. To address this issue, this study uses the ant 

colony algorithm to optimize the path of agricultural plant protection UAV while considering obstacle 

avoidance. As a result of the inability of plant protection UAVs to perform spraying operations when turning, 

to improve work efficiency, combined with the terrain characteristics of the target farmland area and the 

actual UAV model, this study abandoned the spiral (See Fig. 2 b) covering method and chose the cow 

plowing (See Fig. 2 a) method as the coverage method for plant protection UAV spraying operations. 

Under the cow plowing method, the flight trajectory of the plant protection UAV is a unidirectional 

straight line. Therefore, the main method for optimizing its path is to determine the total sum of one-way 

paths, which is the total flight length. In addition, the UAV used in this study cannot perform operations during 

turns, so the optimization process should minimize the number of turns for the UAV.  

 

Referring to XX’s research, the total flight length SBou and total number of turns TBou of plant 

protection UAV are defined as Formulas (2) and (3), respectively. 

Bou

M M
S = L.ceil( ) + d.(ceil( ) -1)

d d
                                                                  (2) 

Bou

M
T = 2(ceil( ) -1)

d
                                                                              (3) 

In the formula: 

M - The horizontal length of the work area; 

L - Vertical width of the work area; 

D - The maximum width of UAV operation. 

 

Model Building 

The path planning of plant protection UAV first requires a recognizable work environment information 

map. Currently, common model construction methods include grid graph method, visual graph method, and 

Voronoi graph method. Given the use of the ox plowing method in this study and considering the ease of 

achieving full coverage of farmland areas, the grid diagram method was chosen to simulate the 

establishment of a 2D operation plan for plant protection UAV via MATLAB simulation. When constructing the 

grid, the width of the UAV operation was set to a fixed spacing and then the path of the divided grid was 

planned based on environmental information. Compared with the two other modeling methods, the 

complexity of constructing a work environment using the grid graph method is relatively low, and the 

constructed graphics are clearer. To better implement the modeling process, this study determined the 

coordinates of the work area, as well as the coordinates of obstacles and workstations, to set or modify the 

work area of the plant protection UAV. MATLAB was used to establish a 2D environmental coordinate map 

including obstacles and workstations, as shown in Fig. 3. 
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Fig. 3 - Two dimensional environmental coordinate map of plant protection area  

based on MATLAB simulation 

 

In Fig. 3, the yellow area represents a dedicated workstation for UAV takeoff, landing, and 

maintenance. The red area is the experimental area selected for this study. 

 

Design of Obstacle Avoidance Methods 

Chinese farmland is mostly located in mountainous and hilly terrain, and common obstacles during 

spraying operations include telecommunications poles, large trees, and agricultural hardware facilities 

(Khalilpour S. A. et al., 2020). These obstacles have different shapes and irregular distributions. During the 

process of using the ox plowing method, if there are no obstacles on the moving route, the plant protection 

UAV will walk between the two ends of the route during non-turning operations, with a distance of Euclidean 

distance. If there are obstacles on the moving route, the walking route of the plant protection UAV will be 

separated and obstacle avoidance is required (Yin X. et al., 2021). Therefore, in the actual operation process, 

plant protection UAV must flexibly avoid obstacles according to their actual situation. On the basis of existing 

research findings, there are two principles for designing obstacle avoidance methods. One is to avoid 

crossing obstacles, that is, to stop moving forward when obstacles are detected. Another approach is to 

detour around obstacles. Considering the accuracy of grid graph simulation, this study adopted the obstacle 

avoidance design by bypassing obstacles. The principle of detour is shown in Fig. 4. 

 
Fig. 4 - Schematic diagram of obstacle avoidance and detour for plant protection UAV 

 

Calculation of Distance Matrix 

The obstacle avoidance scheme used in this study requires calculating the shortest path between 

any two points on the map (Ampatzidis Y. et. al., 2020). For irregular obstacles, there are multiple detours to 

choose from. Appropriate algorithms must be used to select and calculate the distance between the pre-set 

endpoints of opposite obstacles, and a short path should be selected for the operation. Therefore, the key to 

designing obstacle avoidance methods is to determine the shortest distance between endpoints on the route. 
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The Floyd algorithm was used in this study to calculate the shortest path between any two points in 

the map. The Floyd algorithm has a time complexity of O(n3) and a spatial complexity of O(n2), which can 

limit the computational complexity to an allowable range (Xie P. et al., 2024). As a result of its compact triple-

loop structure, the algorithm performs well in planning dense graphs and can handle problems with positive 

or negative edge weights. Compared with the Dijkstra algorithm, this algorithm has higher execution 

efficiency and is simple and effective. 

In the Floyd algorithm, a directed graph is first constructed based on known conditions and the 

intrinsic relationships between nodes, and the shortest distance matrix d is generated based on the weight 

information between each node. In the distance matrix, D(i, j) represent the weight of the shortest path 

directly connecting point i and point j. If point i and point j cannot be directly reached, D(i, j)=inf. In a directed 

graph, generally D( i, j )D(j, i). 

The routing matrix P is used to record the information of intermediate nodes generated in the 

distance matrix d. When the sum of the weights of d[i, k] and d[k, j] is less than the previous weight of d(i, j), 

update the weight of P[i, j] to the intermediate node k. When the sum of the weights of d [i, k] and d [k, j] is 

greater than the weight of d (i, j), the weight of P[i, j]  is not updated. At the end of the loop, the shortest path 

between any two points can be found in the routing matrix P. Finally, through the obtained routing matrix P, 

calculate the shortest path length from any point i to point j according to the constructed job area. Let the 

point set consisting of all endpoints of the grid line be V1, and the point set consisting of all vertices of 

obstacles be V2. The starting point of the UAV is 
*v , and all the above points from the point set V, as shown 

in formula (4): 
*

1 2V = V∪V ∪ v{ }                                                                             (4) 

Calculate the distance matrix D between any two endpoints based on the point set V, as shown in 

formula (5), where Dij D. 

( ) ( )




2 2

i j i j
i j

x - x + y - y Accessibility  between i  and  J
D =

M otherwise
                          (5) 

M R +, A sufficiently large positive real number. 

The distance Dij calculated according to Formula (5) is the direct distance between any two points in 

the graph, that is, the distance between the two points without obstacles. Correspondingly, it is the indirect 

distance between two points, which is the shortest path when there are obstacles between the two points. 

When there are obstacles between two points, the Floyd algorithm proposed in this article needs to be used 

to calculate the shortest path of the detour. To achieve effective obstacle avoidance of UAV and achieve the 

optimization goal of minimizing the length of operations, this paper used the following algorithm to construct 

the shortest path matrix, as shown below: 

Input: Point set V 

Output: Shortest path matrix R between two points. 

1) Calculate the direct distance D in point set V using formula (5). 

2) Using the Floyd algorithm, calculate the shortest path matrix R between any two points in set V 

based on the distance matrix D. 

3) Due to the fact that the vertices of obstacles do not necessarily belong to the vertices of the grid 

lines. Therefore, by removing all rows and columns corresponding to points (V2-V1) included in V2 but not in 

V1 from R, the matrix R is obtained. 

4) Output the shortest path matrix R. 

 

RESULTS 

Determination of the Shortest Path 

The traditional ant colony algorithm was initially used to solve the traveling salesman problem, which 

requires traversing all points during planning (Tian H. et al., 2023). The path planning problem of plant 

protection UAV is based on line segments as the basic unit of operation, which requires traversing all grid 

lines in the operation area to complete the task of full coverage of the operation area. When using the ant 

colony algorithm for path planning, first, set the endpoints of the grid lines to ensure that the plant protection 

UAV can operate based on line segments.  
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When a UAV reaches a certain endpoint, the primary problem to be solved in path planning is how to 

select the other end point of the line segment that this endpoint is facing. On the basis of the above issues, 

this article proposes the following solutions for the application of the ant colony algorithm in plant protection 

UAV. 

To ensure that the plant protection UAV traverses all grid lines in a basic unit of line segments, the 

first step is to process the line segments formed by the two endpoints of the grid lines. Therefore, this article 

processed the shortest path matrix R, as shown in Formula (6): 





ij

i j

0 i ≠j, Endpoints belonging to the same network  cable
R =

R otherwise
                                   (6) 

After processing, the UAV will inevitably pass through another endpoint of the same grid line when it 

first reaches one end of the grid line. Thus, the plant protection UAV can traverse all line segments during 

operation and complete the full coverage task. 

 

Ant Colony Algorithm Process 

This study defined all grid lines as a set L, and any grid line Li L, i =1,2,3,,n. The two endpoints of Li 

are vi1 and vi2, respectively (where vij V1, j =1, 2, V1 is the set of points formed by all endpoints of the grid 

lines shown in the previous section). The specific implementation steps of the ant colony algorithm based 

path planning for plant protection UAV proposed in this article are as follows: 

Step 1: Construct the operation map of the plant protection UAV. 

Step 2: Initialize the number of ants m in the ant colony algorithm, the maximum number of iterations 

NC- max, the pheromone constant Q, the pheromone weight factor α , the heuristic function weight factor β, 

and the volatility coefficient Å. 

Step 3: Randomly select vij as the starting point for the ants, and set a variable tabuk to store the points 

that the ants have passed. 

Step 4: The ant starts from point vi V1 and selects the next point vj from Allowedk based on the 

concentration of pheromones on the path and the heuristic function. The calculation formula is shown in 

Formula (7). 

   

       






α β

ij ij

k kα β
ij is is

τ (t) × η (t)
s∈Allowed

P (t) = τ (t) × η (t)

0 else

                                       (7) 

In the formula: 
k

ijP (t) : The probability of ant k from point i to j at time t; 

ijτ (t) : The intensity of pheromones on the connection path from point i to point j at time t; 

α : Pheromone weight factor; 

ijη (t) : The expected degree of ant transfer from point i to point j; 

β : Heuristic function weight factor; 

Allowedk: Stores the points that ants are waiting to access; 

Step 5: Check if there are any points in the Allowedk that need to be accessed. If not, record the current 

route. Otherwise, return to step 4. 

Step 6: When ants choose the next line segment to work on, they will release pheromones along their 

path, and the concentration of pheromones that have already walked along the path will evaporate over time. 

Therefore, when all ants traverse all line segments, the pheromone concentration on the job path must be 

updated, as shown in Formulas (8) and (9). 









ij ij ij

m
k

ij ij

k=1

τ (t +1) = (1 - ρ)τ (t) + Δτ

Δτ (t) = Δτ (t)
                                                            (8) 

 





kk

ij

Q / L , ant K from i to j
Δτ (t) =

0 else
                                   (9) 
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In the formula: 

ρ(0 < ρ < 1) : Volatility coefficient of pheromones; 

ijΔτ (t) : The total concentration of pheromones released by all ants on paths i to j; 

k

ijΔτ (t) : The concentration of pheromones released by the k-th ant on paths i to j; 

Q: Constant, representing the total amount of pheromones released by ants in one cycle; 

Lk: The path length of ant k after traversing all the job grid lines. 

Step 7: Check if the number of times the ant has traversed has reached the maximum number of 

iterations. If it has, output the optimal solution. Otherwise, return to step 3. 

The flowchart of the application of ant colony algorithm in plant protection UAV is shown in Fig. 5. 

 
Fig. 5 - Algorithm flow 

Simulation Results and Analysis 

In general, changes in pheromone weight factor, number of ants, heuristic function weight factor, 

maximum number of iterations, pheromone volatility coefficient, and total pheromone quantity can all affect 

the optimization effect of ant colony algorithm. To date, there is no mathematical method that can directly 

solve for the most parameter settings, and the parameters need to be set through empirical or experimental 

methods. This study referred to the former research to set the parameters of the ant colony algorithm  (Liu Lu 

et al., 2024; Tian H. et al., 2023), with specific values shown in Table 1. 

Table 1 

Parameter Settings of Ant Colony Algorithm 

Parameter Parameter value setting 

Maximum number of iterations 500 

Ant count 100 

Heuristic function weight 10 

Pheromone weighting factor 1.0 

Total amount of pheromones 200 

Volatility coefficient 0.9 

 

The software system for this simulation experiment was WIN10 and M atlab2021; the hardware 

platform was Intel (R) Core (TM) i5-6200U CPU @ 2.30GHz, with 8GB of memory. The experimental plot is 

located in Guang'an, southwestern China, and its shape and obstacle distribution are shown in Figure 3. 

According to Figure 3, the coordinates of the plot are arranged counterclockwise as (−32, 80), (−34, 70), (0, 

0), (26, 7), (60, 38), (51, 60), (64, 67), (34, 134), and the coordinates of the workstation are (−10, −40), (10, 

−40), (10, −50), (−10, −50). Adjust the unit as needed in meters. The relevant information about obstacles is 

shown in Table 2. 
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Table 2 

Obstacle Information 

Obstacle name Grid 2D coordinates 

Basic farmland facilities (40,27), (41,27), (41,28), (40,28) 

Water storage well The center coordinates are (3, 2) with a radius of 0.5 

Telecommunications facilities (18,20), (19,20), (19,21), (18,21) 

Power facilities (35,44), (36,44), (36,45), (35,45) 

 

The spraying width of the local plant protection UAV was 6 m. Considering the departure position of 

the UAV from the workstation, it entered the experimental site in a 135° operation direction for work and 

finally returned to the UAV departure workstation. Therefore, in the simulation experiment, initial settings 

were made based on the above conditions, and the obstacle avoidance method of this study was adopted. 

The experimental results are shown in Fig. 6. The new path enabled the plant protection UAV to effectively 

avoid all obstacles and plans an optimal path from the starting point to traverse all trajectories before 

returning to the starting point, verifying the effectiveness of the proposed algorithm. 

 
Fig. 6 - Results of Path Optimization Operation 

 

The red curve in Fig. 6 represents the average path length planned by the ant colony algorithm, whereas the 

blue line represents the shortest path length. The graph shows that the ant colony algorithm had relatively 

small fluctuations in the overall average data when planning the path of plant protection UAV. The algorithm 

could quickly converge to the optimal path, as shown in Fig. 7. 

 
Fig. 7 - Algorithm iteration diagram 
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To further verify the performance of the ant colony algorithm in path planning of plant protection UAV, 

this paper compared the operation path of plant protection UAV with that of traditional cattle plowing method 

in the grid graph. Path planning of plant protection UAV with obstacles reduced the repetition of local paths 

compared with the traditional cattle plowing method (from 15% of repeated paths to 2.7% occasionally), and 

the spraying coverage rate was 100%. These data showed that the ant colony algorithm remarkably 

optimized the operation path of the plant protection UAV, effectively improving its operational efficiency. 

Further observation of the variance data of the shortest path planned by the ant colony algorithm in the table 

revealed that the optimal path length planned by the ant colony algorithm was relatively stable. The above 

analysis indicated that the ant colony algorithm was superior in path planning for plant protection UAV. 

 

CONCLUSIONS 

This study mainly optimized the spraying operation path of plant protection UAV in a certain farmland 

area of a southwestern city in China. First, considering reasonable obstacle avoidance, the shortest detour 

distance was calculated using the Floyd algorithm to construct the optimal path model for plant protection 

UAV. Second, the ant colony algorithm was used for experimental design, and MATLAB was used for 

simulation experiments. Results showed that the path planning method based on the ant colony algorithm 

proposed in this section was feasible, and its coverage range and total operation path were better than 

traditional ox plowing methods. Given the topography of the research object, the proposed approach is 

mainly applicable to farmland with small hilly terrain. When the land area is large, multiple plant protection 

UAVs may be simultaneously deployed for optimal path planning. In addition to mature applications in the 

agricultural field, UAV path planning has the feasibility of further expansion in commercial fields (such as 

UAV express delivery routes), cultural tourism, and sports (such as optimizing the performance paths of 

UAVs in sports stadiums and spraying operations on football fields). The limitations of further application of 

the results of this study mainly lie in two aspects: first, some geomorphic environmental wind fields in the 

mountainous areas of southwest China change greatly in real time, and the UAV may be interfered with in 

the process of plant protection operation; second, this study mainly considers the operation scenario of 

contiguous farmland area, and does not consider the operation scenario of non-contiguous multi-farmland 

area. In the future, the application of this path optimization model in plant protection operations of multiple 

farmland under complex wind field environment in mountainous areas will be further verified. 
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