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ABSTRACT  

Simultaneous localization and mapping (SLAM) is one of the key technologies for agricultural robots to build 

maps and localize in complex orchard environments and realize unmanned autonomous operations. Due to 

the complexity of the orchard environment, the single canopy feature and the diffuse reflection of light caused 

by the leaves, etc., the map construction process of the orchard environment leads to mismatch and increases 

the cumulative error of the map construction. Aiming at the above problems, this paper proposes a navigation 

map construction method for orchard environment based on the fusion of Scan Context and NDT-ICP. The 

method firstly searches the Ring key quickly to get the candidate frames, and scores the similarity between 

the candidate frames and the current frame, and effectively detects the loopbacks by two-stage searching 

algorithm to reduce the false matches in the map of orchard environment. Meanwhile, a point cloud alignment 

method based on the fusion of normal distribution transform coarse alignment and iterative nearest point exact 

alignment is used to reduce the cumulative error of the orchard environment map. The results show that the 

improved algorithm compensates the drift of the point cloud map with higher mapping accuracy, better real-

time performance, lower resource utilization, higher overlap between the trajectory estimation and the real 

trajectory, smoother loops, and a 4% reduction in CPU occupancy. In the complex orchard environment, the 

root mean square error and standard deviation of the trajectories of this paper's algorithm are 0.57 m and 0.19 

m, which are 68% and 83% higher than those of the loop detection algorithms in the Lightweight Ground 

Optimized Lidar Trajectory Measurement and Multivariate Terrain Mapping (LeGO-LOAM), respectively. 

Accurate map construction and low drift pose estimation can be performed. The research algorithm effectively 

reduces the influence of mis-matching and large cumulative error in the process of map construction in the 

orchard environment, meets the demand for high-precision environmental mapping in the orchard 

environment, and provides technical support for promoting unmanned operation in the orchard environment. 

 

摘要 

同步定位与绘图（SLAM）是农业机器人在复杂果园环境中构建地图并进行定位、实现无人自主作业的关键技

术之一。由于果园环境的复杂性、树冠的单一性和树叶对光线的漫反射等特点，果园环境的地图构建过程中会

出现不匹配现象，增加了地图构建的累积误差。针对上述问题，本文提出了一种基于 Scan Context 和 NDT-

ICP 融合的果园环境导航地图构建方法。该方法首先快速搜索环键得到候选帧，并对候选帧与当前帧的相似度

进行评分，通过两阶段搜索算法有效检测回环，减少果园环境地图中的虚假匹配。同时，采用基于正态分布变

换粗配准和迭代最近点精确配准融合的点云配准方法，降低果园环境地图的累积误差。结果表明，改进后的算

法可以弥补点云图的漂移，具有更高的映射精度、更好的实时性、更低的资源利用率、更高的轨迹估计与真实

轨迹重合度、更平滑的循环以及降低 4% 的 CPU 占用率。在复杂果园环境中，本文算法的轨迹均方根误差和

标准偏差分别为 0.57 米和 0.19 米，比轻量级地面优化激光雷达轨迹测量和多元地形测绘（LeGO-LOAM）中

的环路检测算法分别高 68%和 83%。该算法有效降低了果园环境地图构建过程中的误匹配和大累积误差的影

响，满足了果园环境高精度环境测绘的需求，为推进果园环境无人化作业提供了技术支撑。 

 

INTRODUCTION 

In recent years, with China's strong support for intelligent agriculture, China's first unmanned farm 

landed, which further promoted the rapid development of intelligent agricultural equipment technology.  
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The application of mobile robots in precision agriculture is becoming more and more widespread, 

autonomous mobile robots have a variety of functions such as environment perception, dynamic decision-

making, path planning and autonomous navigation, and can perform specific tasks in unknown environments. 

Agricultural robotics technology has gained rapid development with the advancement of computers, LiDAR 

and other technologies. Instant localization and map construction is one of the key technologies of agricultural 

robot navigation technology, and it is also an important basis for automatic navigation. The continuous 

development of sensor technology, especially the rapid development of three-dimensional LiDAR in recent 

years, makes the instant localization and map construction technology having a great degree of improvement 

in map building accuracy and robustness. According to the type of sensor, SLAM technology can be divided 

into two categories: visual SLAM and laser SLAM. Among them, visual SLAM obtains environmental 

information with the help of visual sensors, low cost, simple structure, but large arithmetic capacity, easily 

affected by light, not applicable to farmland and other environments with obvious changes in light, laser SLAM 

technology is relatively mature, accurate ranging, less affected by light, and LIDAR compared to cameras, 

ultrasonic, infrared sensors, etc. has the advantages of strong anti-jamming ability, high accuracy, wide 

measurement range, etc., and is more suitable for orchard environments. At present, agricultural robots 

equipped with LiDAR to achieve local positioning and navigation method cannot provide global positioning 

information, Real Time Kinematic (RTK) global positioning method is mainly realized through the three-

dimensional map building and repositioning. The main algorithms to achieve map building are Lidar Odometry 

and Mapping (LOAM) and Lightweight and Ground Optimized Lidar Odometry and Mapping (LeGO-LOAM). 

The LOAM algorithm, which lacks loopback detection and back-end map optimization, operates in the complex 

environment of the orchard with a serious lack of accuracy. Based on this, LeGO-LOAM algorithm adds 

loopback detection and graph optimization part. However, agricultural scenarios are a typical unstructured 

environment, which is characterized by inconspicuous features, uneven terrain, and dynamic changes of 

objects, which brings new challenges to the construction of maps in such scenarios, and the loopback detection 

and graph optimization part inevitably introduces problems such as map mismatch and large cumulative errors 

in orchard environments (Wang et al., 2022). 

Loopback detection, also known as closed-loop detection, is the ability of a robot to recognize that it has 

arrived at a scene so that the map closes the loop, usually using 3D descriptor matching, such as Fast Point 

Feature Histogram (FPFH), Fast Laser Region of Interest Transform (FLIRT) and Signature of Histograms of 

Orientation (SHOT) algorithms (Davison et al., 2007). If the loopback detection is successful, it can significantly 

reduce the cumulative error and help the robot realize the obstacle avoidance navigation work more accurately 

and quickly. Therefore, loopback detection has become one of the most popular methods in recent years in 

the field of robotics research. Loop detection has become one of the hotspots in robotics research in recent 

years. With the development of deep learning, semantic information can be easily obtained from point cloud 

images, which can be used to assist SLAM loopback detection (Pire et al., 2017). For example, SegMatch, a 

3D point cloud segmentation matching based method, and SUMA++, a surf-based method, achieve amazing 

accuracy in highway scenes by dynamic removal (Zhou et al., 2021). 

In addition to loopback detection, point cloud alignment is also an important step in robot obstacle 

avoidance navigation. There are two commonly used 3D LiDAR point cloud alignment methods, Iterative 

Closest Point (ICP) and Normal Distribution Transform (NDT). Among them, the ICP algorithm is slower but 

more accurate, while the NDT algorithm is faster but less accurate. To address the problems of mis-matching 

of orchard environment maps and large cumulative errors introduced by the LeGO-LOAM algorithm, the Scan 

Context algorithm is used to optimize the LeGO-LOAM map detection module, taking into account the 

characteristics of Scan Context's high accuracy, low cost, high efficiency and robustness, and the NDT -ICP 

point cloud alignment algorithm to optimize the global map obtained from the loop to improve the accuracy, 

real-time and robustness of the map construction in the orchard environment, and the performance of the 

algorithm is evaluated with the KITTI dataset 00 sequential data and the field map construction test in the 

vineyard as an example to validate the performance of the proposed map construction method for the 

agricultural robots' localization and navigation, environment map construction and unmanned driving. 

 

MATERIALS AND METHODS 

LeGO-LOAM Algorithm 

LeGO-LOAM is based on the improvements made to the LOAM algorithm in 2018. As illustrated in 

Fig. 1, the collected point cloud of the orchard environment is initially clustered and segmented, with the ground 

point cloud being isolated. Concurrently, a limited number of point cloud clusters are excluded (Zhang et al., 
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2014). A two-step Levenberg-Marquardt (L-M) optimization method is employed to resolve the six-degree-of-

freedom transformation between continuous frames. In the initial stage, the ground point cloud is employed to 

determine the planar transformation parameters (Rösmann et al., 2015). Subsequently, the edge and surface 

points within the segmented point cloud are matched to generate the bitmap transformation matrix, which is 

subsequently processed and aligned. Finally, the motion estimation drift correction is performed, and the final 

pose estimate is generated (Xue et al., 2023). 

 
Fig. 1 – LeGO-LOAM algorithm flow 

 

The LeGO-LOAM method cyclic algorithm is computationally intensive, inefficient in detection, and 

still produces significant cumulative errors in mapping large scenes at long distances (Shan et al., 2018). 
 

Scan Context Loopback Detection Method 

Scan context converts a 3D point cloud to 2.5D by dimensionality reduction and uses a search 

algorithm to match point cloud data from current and historical frames to enable loopback detection (Shan et 

al., 2020). Figure 2 shows the structure diagram of scan context global descriptor. For a frame of point cloud 

data scanned by LiDAR, the top view is obtained from the top of 3D point cloud (as shown in Figure 2a), and 

the polar coordinate system is established with the LiDAR position as its origin. Twenty rings are divided 

outward from origin, and each ring is divided into 60 equal parts, namely 1200 grids, taking the maximum 

height (Z value) of the points in each grid as the grid value. Then the top view is expanded radially into 20 rows 

and 60 columns of rectangular images (Figure 2b), the average values of each row and each column are 

calculated respectively, and the two vectors—ring key and sector are obtained as global descriptors (Dijkstra 

et al., 1959). 

           
 (a) Top view of one frame of point cloud  (b) Rectangular image expanded from the top view 

Fig. 2 – Construction diagram of scan context global descriptor 
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The Scan Context loopback detection algorithm constructs a rectangular image using the scanned 

point cloud data, constructs a KD tree using the loopback key vectors, performs a nearest-neighbor search to 

find similar frames and their loopback key transitions that may be looped back to the current frame, calculates 

the similarity score, and filters out the similar frames that have higher scores; it then calculates the minimum 

offset and the similarity score on a sector-by-sector basis, and selects the frame that has the highest similarity 

score as a looped back frame, solves the attitude relationship between the current frame and the looped back 

frame, and realizes the loopback detection (Seet et al., 2004).This method is highly effective in detecting 

trajectory drift and can significantly reduce the accumulated errors in map construction and localization, 

enabling orchard robots to perform tasks such as obstacle avoidance navigation with greater accuracy and 

speed (Fox et al., 1997). 

 

Improved Algorithm Principle 

The ICP loopback detection method based on Euclidean distance is mainly adopted in the LeGO-

LOAM algorithm, in this paper, the fusion algorithm of Scan Context and NDT-ICP is adopted instead of the 

ICP loopback detection method based on Euclidean distance in the LeGO-LOAM algorithm, and the positional 

constraints computed by the NDT-ICP are added into the GTSAM for the global positional optimization, at this 

time, we obtain The global map is more complete. The block diagram of the algorithm is shown in Fig. 3. 

The system reads reads the point cloud data collected by LiDAR and projects the points as depth 

images. Then, the ground plane of the depth map is estimated, ground points are extracted, and each frame 

of the point cloud Pt is divided into different clusters labeled as segmentation points by the point cloud 

segmentation module. At the same time, the point cloud that cannot be clustered is re-clustered by obtaining 

three features: the label of the point, the row and column index in the depth map, and the distance value. After 

that, the feature extraction module is used to extract the edge feature point n𝐹𝑒 and the plane feature point n𝐹𝑝 

based on the roughness c. The ranging module performs a two-step L-M optimization to obtain the attitude 

transformation matrix through the above two feature points to realize the spatial constraints between 

consecutive frames of the point cloud. The LiDAR mapping module matches the features in (𝐹𝑒
𝑡, 𝐹𝑝

𝑡) with the 

surrounding point cloud 𝑄−𝑡−1 and further sends its own position to GTSAM for map optimization, at which 

point the radar estimates the pose update and optimizes the current map. 

 
Fig. 3 – System architecture diagram of the improved algorithm in this paper 

 

In order to obtain the relative position matrix between the matched point cloud frame and the loopback 

point cloud frame for back-end graph optimization, after confirming the loopback position, this paper chooses 

NDT-ICP to align the point cloud between the matched point cloud frame and the candidate point cloud frame 

of the orchard, and calculate the alignment score by the NDT-ICP method. If the alignment score is less than 

a given threshold, the repositioning is considered successful and the attitude constraints between the 

repositioned frame and the current frame are obtained. The constraints are added to GTSAM for map 

optimization and point cloud map update.  
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The transform fusion module fuses the position and location estimates from the LiDAR rangefinder 

module and the LiDAR mapping module and outputs the final position and location estimates. 

 

Divide the orchard matching point cloud frame space into a number of identical cubes and satisfy that 

there are at least 5 points in the cube, the mathematical expressions for the mean  and covariance matrix 

C of the points in the cube of each matching point cloud frame are: 

1
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where: m is the number of point clouds in the spatial cube of the matched point cloud frame; k is the point 

cloud serial number, k = 1, 2, ..., m; 𝐼𝑘
𝑞
 is the point cloud in the spatial cube of the matched point cloud frame 

of the orchard. 

 

Probability density of each point location in the frame cube of the orchard matching point cloud: 
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Mapping the matched point cloud frames to the loopback detection frame coordinate system, each 

point mapping a transformed normal distribution: 

1T

~ exp
2

qq q

k k k k
I k
k

I I

p I                                                  (4) 

where:  

 
q

kI  is the set of point clouds after 𝐼𝑘
𝑞
 mapping; k  is the mean value of the point cloud set 

q

kI . 

 

Summing the probability densities of each point, the mathematical expression for the parameters of 

the coordinate transformation is evaluated as 
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Optimize s(p) using the Hessian matrix method. Then, remap to the loopback detection frame 

coordinate system until the convergence condition is satisfied. The optimized loopback point set is 
*c

kI  and 

the matched point set 𝐼𝑞. The error between the orchard origin point set  
*c

kI  under the transformation matrix 

(R, t) and the orchard target point set 𝐼𝑞 is denoted by E(R,t). Then the problem of solving the optimal 

transformation matrix is transformed into the optimal solution (R,t) satisfying minE(R,t). where E(R,t) is called 

the objective function, which represents the degree of difference between the two point sets. This objective 

function is expressed as 

*
2

1

( , )
n

q c

k k
k

E R t I I R t                                                   (6) 

where:  

 
*c

kI is the optimized loopback point set of the candidate point cloud frame 𝐼𝑐; n is the number of points 

in the point set 𝐼𝑘
𝑞
;  R is the rotation parameter;  t is the translation parameter. 
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In order to minimize the objective function, the optimal transformation matrix, i.e., R and t is solved. 

first, the corresponding closest point in the 𝐼𝑞 point set is calculated for each point in the orchard's target point 

set, 
*cI . The rotation parameter R and the translation parameter t are obtained using SVD decomposition so 

that the transformation matrix E(R,t) is minimized. Using the rotation parameter R and translation parameter t 

obtained in the previous step for the point set 
*cI , new transformed point set 

*cI  is obtained. If the 

transformed point set 
*cI  and 𝐼𝑞 point set satisfy the requirement of the objective function, i.e., the average 

distance between the two point sets is less than a given threshold, then the iterative computation is stopped; 

otherwise, recalculate the new point set 
*cI as the new point set 

*cI and continue iterating until the 

convergence condition is satisfied, and then obtain the optimal solution (R, t) with the relative positional matrix. 

Test Equipment and Environment 

At present, orchard robots are available in three main categories: legged, wheeled, and tracked. Each 

type has its own set of advantages and disadvantages in different environments. The legged inspection robot 

exhibits strong terrain adaptability, yet its intricate structure and sophisticated control system present 

significant technical challenges. Wheeled inspection robots are distinguished by their high speed, high 

efficiency, and low motion noise, yet they are constrained by complex terrain. The tracked inspection robot is 

equipped with a robust traction force, high applicability, and excellent stability in challenging terrain, such as 

outdoor, sandy, and muddy areas.In this paper, a tracked kinematic chassis was used to design an orchard 

robot for data acquisition and field trials in a complex outdoor orchard environment, as shown in Fig. 4(a). The 

hardware system mainly consists of a 3D LiDAR (Ouster-64), Global navigation satellite systems real-time 

kinematic (GNSS-RTK), and Jetson AGX Xavier with Ubuntu 20.04 operating system. Ouster-64 is a 64-line 

3D LiDAR developed by Ouster Inc. in the United States. The GNSS-RTK used in this paper was developed 

by New Coordinate Intelligent Equipment Co. Ltd. in Zibo, Shandong Province, China, and the Jetson AGX 

Xavier was manufactured by NVIDIA Corporation in Santa Clara, California, USA. 

The robot fixes the Ouster 64-line LiDAR at the centre of the crawler chassis through an aluminium 

radar bracket, and the centre of the LiDAR is 1 m away from the ground, which ensures that the LiDAR is not 

obstructed and guarantees the accuracy of the SLAM construction. In addition, two GNSS antennas are 

screwed to the strong magnetic suction cups and fixed in the forward direction and backward direction of the 

crawler chassis respectively, with a distance of 1 meter, to ensure that there is no obstruction above the 

antennas, so as to ensure that they can receive good positioning signals, and at the same time, ensure that 

the corresponding centres of the two GNSS antennas form the same line with the central axis of the crawler 

chassis, so as to ensure that the GNSS-RTK can collect the position of the orchard robots in real time. GNSS-

RTK can collect the position information of the orchard robot in real time, and the accuracy reaches centimetre 

level. Finally, the Jetson AGX Xavier is installed and connected to the robot's underlying control driver board 

via a serial cable, to the GNSS-RTK positioning receiver via a USB cable, and to the LiDAR adapter box via 

an Ethernet cable. The tracked chassis of the orchard robot is powered by a bucking module that reduces the 

48V voltage of the LiDAR to 24V and the 48V voltage of the Jetson AGX Xavier to 5V. Figure 5 shows the 

hardware connection diagram of the orchard robot. 

 
(a) Orchard robots                                                  (b) Orchard environment 

 

Fig. 4 – Field orchard environmental experiment  

1. External Monitor; 2. Jetson AGX Xavier; 3. Crawler-Type Mobile Chassis; 4. Dual-Antenna GNSS-RTK; 5. 64-Line 3D LiDAR 
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Fig. 5 – Hardware Connection Diagram of Orchard Work Robot 

 

 

The data used for the experiments in this paper are the KITTI dataset in the field of automated driving 

and the dataset collected in the field of standardized plantation vineyard environment. Among them, the 

orchard environment dataset has a total length of 1707.635 m and a duration of 1166 s. The KITTI dataset 00 

sequence, which has a total length of 3724.187 m, lasts for 570 s.  

As shown in Fig. 4(b), in order to study the SLAM approach for orchard robots in orchard 

environments, we have used the KITTI dataset 00 sequence in the Grapevine Base in Huantai County, Zibo 

City, Shandong Province (N37.07420° and E117.91777°) in Zibo City, Shandong Province, where a 132-m × 

144-m rectangular plot was selected for data collection. The cultivation pattern of the grape base is the ridge 

planting method, which means that grapes are planted in a single row on each ridge with a row spacing of 3 

m. The cultivation pattern of the grape base is the ridge planting method. To collect the data, we need to scan 

the orchard environment with a LIDAR-equipped robot. The manually controlled orchard robot travels through 

the orchard at a speed of 0.5-1 m/s, and the 3D LIDAR records the point cloud data at a frequency of 10 Hz. 

 

RESULTS 

Experiment details 

The experimental equipment used for the test was a Shenzhou laptop, its CPU model is I7-12650H, 

memory is 16G, the graphics chip is NVIDIA Geforce GTX4060, the system environment is Ubuntu20.04, ROS 

noetic, PCL 1.8, GTSAM 4.0.0, Python 3.6. The test dataset uses the KITTI dataset 00 sequence as well as 

our field-collected standardized vineyard environment dataset. 

In the loopback detection experiment on the KITTI dataset, the vineyard point cloud map generated 

by the orchard robot based on the LeGO-LOAM algorithm is depicted in Fig. 6(a). Upon the orchard robot's 

return to the starting point, the end point of the radar odometer fails to form a closed loop with the starting 

point, resulting in a cumulative error in position estimation that causes the robot trajectory to deviate and the 

loopback detection to fail in this instance. The point cloud generated by this paper based on the scanning 

context fusion NDT-ICP loopback detection algorithm is shown in Fig. 6(b).  

The robot is able to recognize the scene of the previously reached location after building the map and 

successfully performs loopback detection. Furthermore, we conducted a comparative analysis between LeGO-

LOAM and the proposed algorithm on a standardized vineyard environment dataset, as illustrated in Fig. 7(a) 

and Fig. 7(b). This analysis revealed that the endpoints of the vineyard point clouds generated by LeGO-LOAM 

do not form a closed loop with the starting point, resulting in a failed loopback. In contrast, the vineyard point 

clouds generated by this paper's algorithm are successfully looped back, as illustrated by the red box. 
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(a) Loopback detection test failed                                      (b) Loopback detection test successful 

Fig. 6 – KITTI dataset loopback detection test 

 

     
(a) Loopback detection test failed                                        (b) Loopback detection test successful 

Fig. 7 – Vineyard dataset loopback detection test 

 

Figure 8 shows the global point cloud map of KITTI dataset 00 sequence constructed by LeGO-LOAM 

and the improved algorithm in this paper. Figure 9 shows the local zoomed-in point cloud map of KITTI dataset 

00 sequence constructed by LeGO-LOAM and the improved algorithm in this paper. It can be seen that when 

the LeGO-LOAM algorithm is used for mapping, the drift is serious, the effect is poor and the mapping is 

incomplete. When the algorithm in this paper is used for mapping, the mapping results are more complete and 

clearer than the LeGO-LOAM algorithm. Figures 8(b), (d) and 9(b), (d) show that it just makes up for the 

phenomenon of point cloud map drift. 

       
        (a)                                           (b)                                          (c)                                         (d) 

Fig. 8 – Global Map 

 

              
        (a)                                           (b)                                          (c)                                         (d) 

Fig. 9 – Local zoom map 
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Test Analysis 

In order to evaluate the effectiveness of the mapping method in this paper in the vineyard, the 

continuously acquired latitude and longitude information from GNSS is used as the trajectory truth in this paper 

to compare with the trajectory generated by the algorithm. The Root Mean Square Error (RMSE) and the 

Standard Deviation (STD) are often used as evaluation metrics for algorithms, so we use this as a reference. 

The mathematical expression for root mean square error (RMSE) is: 

2

1

d

a
a

X X

RMSE
d

                                                 (7) 

where: 𝑋′ is the true value; 𝑋𝑎 is the measured value; d is the number of positions; a is the positional ordinate, 

a = 1, 2, ..., d. 

The mathematical expression for standard deviation (STD) is: 

2

1

1

d

a
a

X X

std
d

                                                      (8) 

where X  is the mean value. 

 

Three algorithms for motion trajectory estimation for the orchard test: LOAM, LeGO-LOAM and Ours. 

as shown in Fig. 10, the algorithm in this paper gives the best results, which are basically consistent with the 

real trajectory (ground truth). 

 
                         (a)                                     (b)                                       (c)                                           (d) 

Fig. 10 – Trial traces versus real-value traces  

(a). Global trajectory of the KITTI dataset; (b). Localized trajectories for the KITTI dataset;  

(c). Global trajectory of the Vineyard dataset; (d). Localized trajectories for the Vineyard dataset. 

 

 

Table 1 gives the estimated path length, time consumption, CPU occupancy, RMSE, and STD for 

LOAM, LeGO-LOAM, and the algorithm in this paper (Ours), reflecting the real-time robustness and stability 

of the algorithms. 

Table 1 
Test error comparison between different algorithms 

Scene 
Algorithm         Length 
                            (m) 

Time           CPU Rate             
  (s)                    / % 

RMSE               STD 
    (m)                 (m) 

  LOAM             3736.586 556.362            70 7.92              4.88 
Kitti00  LeGO-LOAM  3731.182 

Ours               3724.187 
572.168            65 
540.872       62 

5.46              2.41 
2.11              0.72 

  LOAM             1719.361 1181.271          77         2.88              1.31 
Vineyard  LeGO-LOAM  1712.846 1173.984          74 1.76              1.12 

  Ours           1707.635 1166.323          71 0.57              0.19 

 

In comparison to the LeGO-LOAM algorithm, the algorithm presented in this paper demonstrates a 

4% reduction in CPU occupancy on average, an improvement in real-time performance, and a reduction in 

elapsed time of approximately 5%. The root mean square error and standard deviation of the algorithm 

presented in this paper in the KITTI 00 dataset are 2.11 meters and 0.72 meters, respectively. These values 

are reduced by 61% and 70%, respectively, in comparison to the LeGO-LOAM algorithm.  
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In the Vineyard dataset, the root mean square error and standard deviation of this algorithm are 0.57 

m and 0.19 m, respectively, representing a reduction of 68% and 83%, respectively, in comparison to the 

LeGO-LOAM algorithm. 

The experiments demonstrate that in a large-scale, standardized planting vineyard scenario, the 

orchard robot is capable of successfully looping back to detect multiple times, thereby greatly reducing the 

cumulative error and enhancing the efficiency of our algorithm. Furthermore, an examination of the KITTI 

dataset reveals that the algorithm has been optimized for real orchard scenarios. This is due to the fact that 

the algorithm is not constrained by the dimensions of the scene in question. The experimental results serve to 

illustrate the viability of our augmented algorithm in the context of orchard scenes. 

 

CONCLUSIONS 

This study addresses the context of complex orchard environments where simultaneous localization and 

mapping (SLAM) in large-scale scenarios often leads to loopback failures. To address these challenges, this 

paper presents a method for constructing navigation maps for orchard environments based on scanning 

context and NDT-ICP fusion. The method initially identifies potential frames by rapidly searching for ring keys, 

and then assesses the degree of similarity between candidate frames and the current frame. This approach 

enables the effective detection of loopbacks through the implementation of a two-stage search algorithm, 

thereby reducing the occurrence of false matches in the orchard environment map.  

Furthermore, a point cloud alignment method based on the fusion of normal distribution transform coarse 

alignment and iterative nearest point exact alignment is employed to reduce the cumulative errors in the 

orchard environment map, and field experiments were conducted in the vineyard. The following conclusions 

were drawn from the study: 

1. An improved SLAM algorithm incorporating Scan Context and NDT-ICP proposed in this paper has 

been tested on datasets and experimental test results show that the improved algorithm has higher mapping 

accuracy and lower time consumption and resource usage. 

2. The mapping and position estimation performance of LOAM, LeGO-LOAM, and the enhanced 

algorithm of this paper were evaluated using the KITTI dataset 00 sequence with the vineyard dataset. The 

results demonstrated that the algorithm proposed in this paper exhibited enhanced performance in terms of 

reducing the drift of point cloud maps, improving the accuracy of the motion trajectory estimation, and providing 

a more seamless loop. Additionally, the estimated trajectory length was found to be more closely aligned with 

the real trajectory length. In comparison to the LeGO-LOAM algorithm, the CPU occupancy is reduced by 4% 

on average, the real-time performance is enhanced, and the time consumption is reduced by approximately 

5%. In the KITTI 00 dataset, the root mean square error and standard deviation of the enhanced algorithm are 

2.11 meters and 0.72 meters, respectively. In comparison to the LeGO-LOAM algorithm, these two values are 

reduced by 61% and 70%, respectively. In the vineyard dataset, the root mean square error and standard 

deviation of our enhanced algorithm are 0.57 m and 0.19 m, respectively, representing a reduction of 68% and 

83%. 

3. The prevailing approach to SLAM is largely reliant on mathematical models and the design of intricate 

algorithmic processes to process sensor data and generate localization maps. In the future, there is potential 

to explore the integration of deep learning and SLAM. This could enable the full exploitation of the strengths 

of deep learning in vision and semantics, thereby enhancing the localization and mapping accuracy of the 

SLAM system. Furthermore, the application of a deep learning model to extract and analyse the features of 

the sensor data could lead to improvements in the performance and applicability of mapping and localization. 
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