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ABSTRACT  

This paper proposes a local path planning algorithm method named S-TEB (Smooth Time Elastic Band), aimed 

at fulfilling the requirement of full coverage for ORLMs (Orchard Robotic Lawn Mowers) during mowing 

operations. Firstly, by analyzing the tracking control mode of ORLMs in operational scenarios, control points 

are selected reasonably. Subsequently, utilizing B-spline curves, the path is optimized to generate the optimal 

trajectory and speed for ORLMs that satisfy multiple objectives and constraints. Finally, multiple simulations 

and field experiments were conducted in actual operational environments, with a speed of 0.6 m/s. 

Experimental results show that in scenarios involving obstacle avoidance, the minimum distance between the 

automatic lawnmower and the outer contour of obstacles is 4 cm. Compared to the traditional TEB planning 

algorithm, there is a 4.23% increase in mowing coverage area. These findings provide theoretical and technical 

support for local path planning in the operational scenarios of ORLMs. 

 

摘要  

本文提出了一种名为 S-TEB 的局部路径规划方法，以满足果园割草机器人在割草作业中的全覆盖需求。首先，

通过分析果园割草机器人在作业场景下的追踪控制模式，合理选取控制点。然后，利用 b 样条曲线对路径进行

优化，生成满足多目标、多约束条件的自动割草机最优轨迹和速度。最后，在实际作业环境中进行了多次仿真

和实车试验，速度为 0.6 m/s。试验结果显示，在绕行障碍物场景中，果园割草机器人与障碍物外轮廓的最小

距离为 4cm。相比传统 TEB 规划算法，割草面积覆盖率提升了 4.23%，为果园割草机器人作业过程中的局部路

径规划提供了理论和技术支持。 

 

INTRODUCTION 

As a consequence of the long-term decline in the number of people of working age, countries around 

the world are exploring the use of unmanned agricultural machinery driving technologies (Zhao et al., 2023; 

Zhong et al., 2020). Grass cutting is an inevitable aspect of agricultural operations. Conducting local path 

planning and autonomous obstacle avoidance for ORLMs (Orchard Robotic Lawn Mowers) has significant 

theoretical and practical implications. The use of ORLMs in agricultural production is becoming increasingly 

prevalent (Huang et al., 2023). Among the essential technologies ensuring the safe operation of ORLMs is 

real-time obstacle detection and local path planning after encountering obstacles (Wen et al., 2022). This 

research aims to explore and implement the S-TEB (Smooth Time Elastic Band) algorithm for local path 

planning in ORLMs, contributing to the advancement of autonomous agricultural machinery technology. 

 The local path planning algorithms can be divided into graph-based local path planning, sample-based 

local path planning, curve interpolation fitting-based local path planning, and reinforcement learning-based 

local path planning (Weixin et al., 2021). Yang et al., (2024), introduced a risk assessment-based local path 

planning algorithm, which extracted and reconstructed active lane-changing scenarios and longitudinal 

collision prevention scenarios from high-dimensional datasets for validation and evaluation. The proposed 

algorithm reduced risks and improved driving efficiency, especially during speed and trajectory changes. 

 In the ORLMs field, Shi et al. (2023) proposed a local path planning method based on Bezier curves 

improving the problem of discontinuous curvature in planned paths.  
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 Liu et al. (2019), presented an obstacle avoidance path planning algorithm that utilized fifth-degree 

polynomial functions on the basis of improved shortest path method, addressing the issue of discontinuous 

curvature in the shortest path method. Zhang et al., (2019), based on the basis of original work (Qiu et al., 

2020), introduced dynamic identification zones and improved the selection range of control points for Bezier 

curves, this results in a smoother curvature of the plan. Guo et al., (2022), proposed a local path planning 

algorithm based on B-spline curves and an improved rapidly exploring random tree algorithm, enhancing the 

efficiency and smoothness of the algorithm.  

 Existing agricultural machinery path planning algorithms are mostly designed for field operations, 

whereas the requirements for ORLMs operations are distinct, necessitating a certain level of coverage in path 

planning to maximize weed cutting efficiency (Yang et al., 2015). In the operational scenarios of ORLMs, 

various types of obstacles exist, including temporarily parked agricultural machinery, taller fruit trees or other 

traffic participants. The characteristics of ORLMs dictate that they cannot perform complex trajectory 

movements, thus requiring higher smoothness in trajectory planning (Wu et al., 2022).  

 In the aspect of environmental perception and localization, environment perception and localization 

are crucial steps for ORLMs to achieve autonomous movement and task execution. Traditional ORLMs often 

rely on buried metal wires to demarcate lawn boundaries, which can lead to higher installation costs and 

inflexibility in adapting to changes in mowing areas (Chen et al., 2023; Qin et al., 2023). This approach is 

inadequate for dynamic orchard environments. Yang et al., (2022), addressed this limitation by equipping 

ORLMs with an omnidirectional camera and an Inertial Measurement Unit (IMU). They utilized the camera to 

capture surrounding landmarks, thereby obtaining more precise position and orientation information. The 

fusion of data from multiple sensors enhances the robot's understanding of the environment and its localization 

accuracy. In this field, Huo et al., (2024), proposed a method that combines data from LiDAR and visual sensors 

for precise orchard robot localization. Furthermore, Kang et al., (2020), introduced a visual perception method based 

on deep learning, enabling orchard robots to achieve real-time environmental perception and modeling. 

 In terms of path planning and coverage rate, path planning and coverage rate are central to the 

execution of mowing tasks by orchard robots. Effective path planning algorithms ensure efficient obstacle 

avoidance and path optimization, thereby enhancing coverage rates. In related studies, Wang et al., (2023), 

proposed a path planning method based on the propagation wavefront algorithm, achieving favorable results 

in orchard environments. Zhang et al., (2022), investigated the feasibility of using deep learning techniques for 

path planning, implementing efficient orchard robot path planning through model predictive control. 

Additionally, Li et al., (2022), introduced a path planning strategy combining potential field methods and genetic 

algorithms, enabling orchard robots to autonomously navigate obstacles and optimize paths. However, it is 

noted that during obstacle avoidance, the smoothness of the path is poor, making it difficult for the lawnmower 

to follow its trajectory accurately during actual operations. 

 
Fig. 1 - The Path planning flow chart for ORLMs  

 
Fig. 2 - The motion model for ORLMs  

 

 This paper addresses the characteristics of ORLMs and their operational scenarios, studying the 

problem of local path planning for ORLMs in various driving environments. Based on the traditional TEB 

algorithm, the S-TEB algorithm is proposed to adapt to the practical operational requirements of lawnmowers. 

By selecting control points judiciously and introducing B-spline curves, the proposed algorithm aims to achieve 

smoother paths while covering a larger area. The objective is to provide technical references for the 

automation, intelligence, safety, and efficiency of ORLMs navigation. 
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MATERIALS AND METHODS 

In the domain of ORLMs, path planning is a key task because it determines both the action strategy 

and the safety of ORLMs in complex environments. The proposed S-TEB local path planning algorithm in this 

paper aims to address the action of ORLMs when encountering obstacles. The primary workflow of the 

algorithm, as shown in Fig. 1, consists of two crucial steps: first, the TEB algorithm is used to generate a global 

path based on map information. The TEB algorithm, known for its efficient trajectory generation and 

optimization capabilities, is widely used in autonomous navigation (Xia et al., 2022; Zhou et al., 2020). Then, 

when ORLMs encounter obstacles, the S-TEB algorithm is used for replanning. Compared to conventional 

methods, the S-TEB algorithm shows a significant improvement in obstacle avoidance performance, enabling 

more adaptive path adjustments to avoid obstacles. By integrating these two steps, our algorithm ensures safe 

navigation of ORLMs amidst obstacles while striving to achieve maximum area coverage, thereby increasing 

the efficiency and reliability of path planning. 

ORLMs motion mode 

In the context of local path planning for ORLMs, the Ackermann motion model plays a central role. 

This is because ORLMs need to consider their spatial motion characteristics during local path planning to 

ensure safe and efficient traversal of obstacles and reaching of target points. The Ackermann motion model 

provides an optimal framework for ORLMs systems to predict and plan their motion trajectories . 

 To ensure collision-free ORLMs with road edges and obstacles, the ORLMs is abstracted as a 

rectangular model. The coupled dynamics of the vehicle suspension are not considered. The mass of the 

ORLMs body is uniformly distributed, and the center of mass is located on the longitudinal geometric line of 

symmetry of the robot. However, it may not be on the transverse geometric line of symmetry. In addition, the 

tire sideslip problem has been neglected. 

 The motion model for ORLMs is shown in Fig. 2. In order to accurately simulate the Ackermann steering 

mode of the ORLMs, two basic coordinate systems have been introduced: the Cartesian coordinate system W 

(𝑋𝑤-𝑂𝑤-𝑌𝑤) , and the frenet coordinate system R (𝑋𝑅-𝑂𝑅-𝑌𝑅). The coordinates of the ORLMs are 𝑆 = (𝑥, 𝑦, 𝜃) , 

where (𝑥, 𝑦) is the position of the smart car in the world coordinate system,  𝜃  is the angle between the 

longitudinal axis of the ORLMs and the world coordinate system. The steering angle of the front wheels of the 

ORLMs is denoted as 𝜑, with a maximum steering angle constraint given by 𝜑 ⩽ 𝜑𝑚𝑎𝑥 . The wheelbase 

between the front and rear wheels is denoted by L, and the angular velocity of the rear wheels is denoted by 

𝜔. The turning radius of the ORLM is denoted by r. 

 The relationship between the turning radius r, the wheelbase L, and the steering angle φ of the front 

wheels should satisfy the following equation (Li et al., 2023): 

𝑟 =
𝐿

tan[𝜑(𝑡)]
(1) 

  The relationship between the steering angle of the front wheels and the angular velocity is given by 

Equation (2). 

𝜔(𝑡) =
𝑣(𝑡)

𝑟(𝑡)
, 𝜑(𝑡) = arctan[

𝜔(𝑡)𝐿

𝑣(𝑡)
] (2) 

 In the equation, φ(t) represents the real-time steering angle of the ORLMS. The kinematic state equation 

of the ORLMs is shown in Equation (3). 

𝑆̇(𝑡) = [

𝑥̇(𝑡)

𝑦̇(𝑡)

𝜃̇(𝑡)

] =

[
 
 
 
 
cos[𝜃(𝑡)]

sin[𝜃(𝑡)]

tan [
𝜑(𝑡)

𝐿
]
]
 
 
 
 

𝑣(𝑡) (3) 

 In the equation, 𝑆̇(𝑡)  represents the derivative of the pose state of the ORLMs, [𝑥̇(𝑡), 𝑦̇(𝑡),𝜃̇(𝑡)]T 

represents the position state of the ORLMs. 

 

Vehicle control method 

 Stanley is a trajectory tracking algorithm based on geometry. Its main idea is to use the center of the 

front wheel as the reference point, without the need for a preview distance, to directly calculate the lateral error 

and heading error from the center of the front wheel to the target trajectory.  
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 Assume that the current lateral error e=0, so the vehicle only needs to turn through the angle 𝜃𝑒, and 

the vehicle can always drive along the target trajectory. In this case, let  𝛿(𝑡) = 𝜃𝑒(𝑡). In order to eliminate the 

lateral error, construct a triangle, it can be obtained: 

𝑡𝑎𝑛𝛿𝑒 =
𝑒

𝑑𝜔
(4)  

𝑑 =
𝑣

𝑘
 into the above formula, the following is obtained:  

𝛿𝑒 = 𝑡𝑎𝑛−1 (
𝑘𝑒

𝑣
) , 𝛿(𝑡) ∈ [𝛿𝑚𝑖𝑛 , 𝛿𝑚𝑎𝑥] (5) 

𝛿(𝑡) = 𝜃𝑒(𝑡) + 𝑡𝑎𝑛−1 (
𝑘𝑒

𝑣
) , 𝛿(𝑡) ∈ [𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥] (6) 

 
Fig. 3 - Schematic diagram of Stanley trajectory tracking control algorithm  

 

 ORLMs generally operates at low speed. In order to solve the noise problem, a positive constant 𝑘𝑠 is 

added. The final corner is: 

𝛿(𝑡) = 𝜃𝑒(𝑡) + 𝑡𝑎𝑛−1 (
𝑘𝑒

𝑘𝑠 + 𝑣
) (7) 

Principle of TEB algorithm 

 
Fig. 4 - The relationship between bit position and 

time interval with TEB algorithm 

 

 
Fig. 5 - Abstract graph of pose and time interval 

relationship in TEB algorithm  

 The global path of the TEB algorithm consists of poses relative to discretized pose points 𝑆𝑖(𝑥𝑖, 𝑦𝑖
, 𝜃𝑖)

T. 

In this context, (𝑥𝑖, 𝑦𝑖) represents the position of discrete path points, and 𝜃𝑖 denotes the angle between the 

direction of motion of the ORLMs and the X-axis of the world map, as shown in Fig. 4. At this point, the pose 

sequence can be represented as: 

𝑄 = {𝑆𝑖}𝑖=0,⋯,𝑛 (8) 

 The time interval 𝚫𝑻𝑖 denotes the time required for the ORLMs to move from the current position point 

𝑆𝑖 to the next position point 𝑆𝑖+1 in the sequence 𝑄. The time interval 𝚫𝑻𝑖 is the time required for the ORLMs 

to move from the current position point 𝑆𝑖 to the next position point  𝑆𝑖+1 in the sequence 𝑄 (Dai et al., 2022). 

Therefore, the trajectory formed by the TEB algorithm consists of two sets of time interval sequences and 
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position point sequences. Therefore, the trajectory formed by the TEB algorithm consists of two sets of time 

interval sequences and position point sequences. The time interval sequence can be expressed as： 

𝜏 = {Δ𝑇𝑖}𝑖=0,1,⋯,𝑛−1 (9) 

 The optimization sequence consisting of the position and time of the intelligent cart in the TEB algorithm 

can be expressed as follows: 

B = (Q, 𝜏)

= {s1 , ΔT1, s2, ΔT2, … , sn−1, ΔTn−1 , sn}
                                                           (10) 

 The central concept behind the TEB algorithm is to determine the optimal sequence of vehicle poses 

within specified time intervals. This optimization problem is formulated as a nonlinear least-squares cost 

function, aiming to aggregate the weighted sum of B* values. 

 In the objective function B constituted by the optimization sequence, the relationship between each 

position point and time is affected by the TEB constraints. Usually, the TEB constraints contain four types of 

constraints: incomplete kinematics constraints, acceleration and velocity constraints, obstacle point and global 

path point constraints, and shortest time constraints (Wu et al., 2021). 

 In most cases, ORLMs needs to follow the global path points to navigate around obstacles and complete 

local path planning (Jiang et al., 2022). The global path planning algorithm treats ORLMs as a point mass, and 

the planned global path is an ideal trajectory. However, in real-world scenarios, due to constraints such as its 

own dynamics, ORLMs cannot completely follow the global path (Huang et al., 2023). Therefore, it is necessary 

to further consider the information of global path points and obstacles, establish reasonable constraints, and 

plan paths that conform to reality. 

 The distance between the local path point and the global path point is expressed as 𝑑𝑚𝑖𝑛,𝑘 , and the 

distance between the local path point and the obstacle is expressed as 𝑑𝑚𝑖𝑛,𝑗, its simplified diagram is shown 

in Fig. 5, point 𝑂𝑗  represents an obstacle, and point  𝑃𝑘  represents the path point of the global path. The 

obstacle avoidance penalty function of TEB is as follows: 

𝑓obstacle = 𝑒𝜏(−𝑑min,𝑗 , −𝑟𝑂min
, 𝑘, 𝑆, 𝑛) (11) 

  In order to ensure that the ORLMs do not collide with road edges and obstacles, the ORLMs are 

abstracted as a rectangular model and a kinematic model. In the formula, 𝑟𝑂𝑚𝑖𝑛
 represents the lower limit of 

the minimum distance set between the smart car and the obstacle. Similarly, the number of penalty terms 

following the global path can be expressed as: 

𝑓path = 𝑒𝜏(𝑑𝑚𝑖𝑛,𝑗 , 𝑟𝑃𝑚𝑎𝑥
, 𝑘, 𝑆, 𝑛) (12) 

 𝑟𝑃𝑚𝑎𝑥
 is the upper limit of the allowed deviation from the global path points. The penalty function takes 

effect when the distance of the smart trolley from the obstacle is less than the set lower limit distance, or the 

distance from the path point is greater than the set upper limit distance. If it is within the allowed range, the 

penalty function outputs 0. 

Optimize TEB algorithm 

 Incomplete Kinematic Constraints are constraints that contain generalized coordinate derivatives of the 

system and are not integrable. The turning radius of the ORLMs is limited by its own turning radius, which 

belongs to incomplete kinematic constraints. Fig. 6 shows the relationship between bit position and time 

interval with TEB algorithm when turning. 

 
Fig. 6 - Schematic diagram of ORLMS turning motion 

 

 The displacement of the non-complete kinematic constraint of the AMR between two neigh boring 

attitude points is a path composed of a segment of arcs. In Fig. 6, the displacements of the ORLMs from point 

𝑆i to point 𝑆i+1 are on arcs with constant curvature, thus they satisfy the following equations. 
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𝛽𝑡,𝑡 = 𝛽𝑡,𝑡+1 (13) 

𝑑𝑡,𝑡+1 = (
𝑥𝑡+1 − 𝑥𝑡
𝑦𝑡+1 − 𝑦𝑡

0
) (14) 

[

cos𝛽𝑡,𝑡

sin𝛽𝑡,𝑡

0

]𝑑𝑡,𝑡+1 = 𝑑𝑡,𝑡+1 [

cos 𝛽𝑡,𝑡+1

sin𝛽𝑡,𝑡+1

0

] (15) 

 Where: 𝛽𝑡,𝑡 and 𝛽𝑡,𝑡+1 are the angles between the traveling direction of the ORLMS and the X-axis of the 

world coordinates, so the cost equation of the incomplete kinematic constraints is shown as follows. 

𝑓(𝑥𝑡, 𝑥𝑡+1) =
∥
∥
∥∥
∥
[(

cos 𝛽𝑡,𝑡

sin𝛽𝑡,𝑡

0

) + (
cos 𝛽𝑡,𝑡+1

sin𝛽𝑡,𝑡+1

0

)]𝑑𝑡,𝑡+1

∥
∥
∥∥
∥
2

(16) 

 When the ORLMs with Ackermann structure turns, the turning radius must not be smaller than its 

minimum turning radius, therefore, its constraint is shown as follows. 

𝑟(𝑥𝑡+1 , 𝑥𝑡) = |
𝑣𝑡

𝜔𝑡

| ⩾ |
𝑑𝑡

2sin
𝛼𝑡

2

| = 𝑟min (17) 

 The smart trolley needs to satisfy the incomplete kinematics constraints, and also needs to satisfy that 

the turning radius of the smart trolley is not less than its minimum turning radius,  𝑟𝑡  ≥ 𝑟min. 

⚫ Velocity and acceleration constraints 

 The constraints of velocity and acceleration are composed of the Euclidean distance between two neigh 

boring attitude points 𝑆i and 𝑆t+1  and the time Δ𝑇𝑖 needed for the motion between the two points, and the 

constraints are formed by obtaining the rotational and translational velocities of the intelligent trolley, whose 

solution formulas are shown as follows. 

𝑣 ≈
1

Δ𝑇𝑖

∥ (
𝑥𝑡+1 − 𝑥𝑡

𝑦𝑡+1 − 𝑦𝑡

) ∥ (18) 

𝜔𝑡 ≈
𝛽𝑡+1 − 𝛽𝑡

Δ𝑇𝑖

(19) 

 Similarly, the average linear acceleration and average angular acceleration can be obtained from the 

linear and angular velocities of two consecutive postures, shown as follows. 

𝑎𝑡 =
2(𝑣𝑡+1 − 𝑣𝑡)

Δ𝑇𝑖 + Δ𝑇𝑖+1

(20) 

𝑎𝜔 =
2(𝜔𝑡+1 − 𝜔𝑡)

Δ𝑇𝑖 + Δ𝑇𝑖+1

(21) 

⚫ Minimum time constraint 

 The TEB algorithm combines the time information between the neighboring position points of the 

ORLMs, different from the traditional local path planning algorithm which takes the shortest distance as the 

optimization criterion, the TEB algorithm takes the shortest time as the optimization criterion. 

The objective function takes the square of the sum of the time intervals between all the position points as the 

optimal index, and its expression is shown as follows. 

𝑓short_time = (∑  

𝑛

𝑖=0

Δ𝑇𝑖)

2

, 𝑖 ∈ 𝑁 (22) 

 Constraints on Obstacle Points and Global Paths  

 Usually, the ORLMs needs to follow the global path points to avoid obstacles and complete the local 

path planning. The global path planning algorithm treats the ORLMs as a mass point, and the planned global 

path is an ideal path. However, in reality, the ORLMs cannot follow the global path completely due to its own 

dynamics and other constraints. Therefore, it is necessary to further consider the global path points and 

obstacle information to construct reasonable constraints and plan a realistic path. 

⚫ The trajectory planning constraints 

 For a curve composed of discrete points with equal lateral spacing, the magnitude of the first derivative 

of the trajectory points is positively correlated with the length of the curve. That is, the smaller the first derivative 

of the trajectory points, the smoother the curve. Hence, the cost function 𝐶smooth for smoothness can be derived 

as: 
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𝐶smooth = 𝑊lenth ∑ 

𝑛

𝑖=1

(𝑙′(𝑠𝑖))
2) (23) 

where 𝑊lenth is the distance weight, and 𝑙′(𝑠𝑖) is the lateral displacement of the agricultural machinery at the 

longitudinal distance 𝑠𝑖. 

⚫ Severity of danger 

 The severity of danger is assessed based on the distance of ORLMs from obstacles when circumventing 

static obstacles. Let 𝑑 denote the straight-line distance between the ORLMs and the obstacle.  

 The cost function for the severity of danger is denoted as 𝐶danger. 

𝐶danger = {

0, 𝑑 > 𝑑2

𝑊danger

𝑑
, 𝑑1 ⩽ 𝑑 < 𝑑2

+∞,𝑑 ⩽ 𝑑1

(24) 

 In the formula, 𝑊danger represents the weight of the severity of danger, 𝑑1 is the risk distance in meters 

(m), and 𝑑2 is the safety distance in meters (m). Beyond the safety distance, it is assumed that there is no 

collision risk between the agricultural robot and the obstacle, and the cost is 0. Within the risk distance, it is 

assumed that there is a collision risk between the agricultural robot and the obstacle, and the cost is considered 

infinite. Between the risk distance and the safety distance, the severity of danger is inversely proportional to 𝑑.  

⚫ Selecting Control Points 

 In the actual operation process, the task target point of the lawn mower is abstracted as shown in the 

Fig. 7. As is commonly understood, curvature denotes the degree of curvature exhibited by a curve. Altering 

the radius of a circle, smaller radii yield larger curvatures, resulting in more pronounced curvature of the curve. 

Conversely, larger radii lead to smaller curvatures, resulting in a smoother curve. Illustrated in the diagram are 

three curves denoted as 𝑙1, 𝑙2, and 𝑙3, respectively. These curves are positioned on circles centered at points 

𝑂1, 𝑂2, and 𝑂3, with radii denoted as 𝑅1, 𝑅2, and 𝑅3, respectively. If curvature is denoted by K: 

𝐾 =
1

𝑟
(25) 

 For a general curve, the degree of curvature varies at different positions. This variation in curvature can 

be described using curvature. Curvature denotes the degree of curvature of a curve at a certain point and can 

be obtained by computing the second derivative of the curve. 

                  
Fig. 7 - Curvature models 

 

 In the curve, some positions exhibit significant curvature while others are relatively flat. To compute the 

curvature of point  𝑥0  on the curve, a point to the left is selected and another to the right of  𝑥0, 𝑥0 − 𝛿 and 

𝑥0 + 𝛿 respectively. These three points collectively determine a circle, the radius of which is named R, as 𝛿 

tends towards zero, this circle becomes the osculating circle of the curve at point 𝑥0. By calculating the radius 

of the osculating circle, the curvature of the curve at point 𝑥0 can be determined. 

 According to the circumscribed circle formula: 

𝑅 =
𝑎𝑏𝑐

4𝑆
(26) 

 𝑆 is the area of the circumcircle determined by three points a, b, and c representing the lengths of the 

three sides. The directed area of the parallelogram formed by vectors a and b can be represented by the 

determinant 𝑑𝑒𝑡(𝑎⃗, 𝑏⃗⃗). 
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𝑅 =
𝑎𝑏𝑐

4𝑆
=

||𝑎⃗|| × ||𝑏⃗⃗|| × ||𝑐||

4 × det(𝑎⃗, 𝑏⃗⃗)
(27) 

 Dividing both sides by 𝛿3 it is obtained: 

R =
√[𝑓(𝑥0 + 𝛿) − 𝑓(𝑥0 − 𝛿)]2 + 4𝛿2 ⋅ √[𝑓(𝑥0 + 𝛿) − 𝑓(𝑥0)]

2 + 𝛿2 ⋅ √[𝑓(𝑥0) − 𝑓(𝑥0 − 𝛿)]2 + 𝛿2

2|𝛿𝑓(𝑥0 + 𝛿) + 𝛿𝑓(𝑥0 − 𝛿) − 2𝛿𝑓(𝑥0)| (28) 

 When 𝛿 approaches 0, the radius of the osculating circle is r, thus r is the limit of R, resulting in: 

𝑟 = 𝑙𝑖𝑚
𝛿→0

 𝑅 =
(1 + (𝑓′(𝑥0))

2
)

3
2

|𝑓′′(𝑥0)|

(29) 

 As the result: 

𝐾 =  
1

𝑟
 =  

|𝑓′′(𝑥0)|

(1 + (𝑓′(𝑥0))
2
)

3
2

 =  
2|(𝑥1 − 𝑥2)(𝑦2 − 𝑦3) − (𝑥2 − 𝑥3)(𝑦1 − 𝑦2)|

√(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2
3 (30) 

 Through detailed calculations and analysis, a significant conclusion is reached: when the parameter k 

undergoes substantial changes, employing a strategy of multiple control points can effectively ensure the 

safety of autonomous robotic systems (ORLMs) during operation. When 𝑘 changes from 0 to non-zero, it 

evaluates to true. When the change in 𝑘  exceeds 0.26, the evaluation result is true. This can be expressed 

with the following formula: 

{

true,    if(𝑘previous = 0) or if(𝑘 = 0)

true,    𝑖𝑓(|𝑘previous − 𝑘|) > 0.26

false,    otherwise

(31) 

 Where 𝑘previous  represents the previous value of 𝑘. 

 Implementing this strategy enables the ORLMs system to adapt more flexibly to various environments 

and situations. Moreover, when faced with complex road conditions, it can navigate and plan paths more 

robustly. Therefore, selecting multiple control points is an effective approach to enhance the safety and stability 

of ORLMs systems, which holds crucial significance for the advancement of autonomous robotics technology. 

⚫ B-spline curve smoothing strategy 

 For the initial path obtained from the TEB algorithm, a cubic uniform B-spline curve smoothing strategy 

is introduced to optimize the path smoothing. The formula for a B-spline curve can be expressed as: 

𝑃(𝑢) = ∑ 

𝑛

𝑖=0

𝑁𝑖,𝑝(𝑢) ⋅ 𝑃𝑖 (32) 

 Where 𝑃(𝑢) is a point on the curve, 𝑢 is the parameter, 𝑛 is the number of control points minus 1, 𝑃 is 

the degree of the B-spline minus 1, 𝑁𝑖,𝑝(𝑢) is the B-spline basis function, and 𝑃𝑖 is a control point. 

When 𝑘=3, the mathematical expression for the cubic uniform B-spline curve is: 

𝑃(𝑢) = ∑  

𝑛

𝑖=0

𝑁𝑖,3(𝑢) ⋅ 𝑃𝑖 (33) 

After introducing the smoothing strategy, line segments around the turning points in the path are replaced 

by curves, resulting in smoother local paths being generated. 

⚫ Smoothness evaluation function 

This paper designs a smoothness function 𝐐k to calculate the overall smoothness of the path during 

algorithm. This function is represented as: 

𝐐k = ∑  

𝑘−1

𝑖=2

𝑎𝑏𝑠 (arccos
𝐷1

2 + 𝐷2
2 − 𝐷3

2

2𝐷1𝐷2

) ⋅
180

𝜋
(34) 

In the equation, 𝐷1 , 𝐷2, and 𝐷3  represent the distances between any three adjacent path nodes. The 

expression is given by: 
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{

    𝐷1 = √(𝑥𝑖+1 − 𝑥𝑖)
2 + (𝑦𝑖+1 − 𝑦𝑖)

2

    𝐷2 = √(𝑥𝑖+2 − 𝑥𝑖+1)
2 + (𝑦𝑖+2 − 𝑦𝑖+1)

2

    𝐷3 = √(𝑥𝑖+2 − 𝑥𝑖)
2 + (𝑦𝑖+2 − 𝑦𝑖)

2

(35) 

In equation, a larger value of 𝐐k indicates that there are more acute angles between adjacent path 

nodes, meaning the path is more tortuous; conversely, a smaller value represents a smoother path. 

Overall, in optimizing the navigation process of ORLMs, the main improvement directions include 

selecting control points reasonably, adding danger constraints, and increasing velocity constraints. By 

selecting control points reasonably, the smoothness and coverage area of path planning can be improved. 

Additionally, the danger penalty function makes ORLMs more cautious when encountering obstacles or 

complex road conditions, thereby enhancing its navigational safety. Furthermore, increasing velocity 

constraints helps balance the speed and safety of ORLMs, ensuring stability during the navigation process. 

These improvement measures collectively influence the path planning and navigation process of ORLMs, 

aiming to enhance its adaptability, safety, and stability in various environments and conditions. 

 

RESULTS 

⚫ Simulation 

In order to verify the effectiveness of the improved S-TEB local planning algorithm, the algorithm was 

integrated into the ROS robot operating system for simulation experiments, and then actual experimental tests 

were conducted on the Ackerman differential robot[6]. The purpose is to verify the improved S-TEB algorithm. 

There are 3 aspects of performance: first, the effectiveness of planning safe motion trajectories at obstacles; 

second, the effectiveness of smoothing the planned path; third, the effectiveness of accurately reaching the 

target point. 

 In the simulation environment shown in Fig. 8, the left side is the location of the simulation environment 

and its obstacles, and the right side is the environment map constructed using SLAM. In the map, the innermost circle 

is the obstacle, the first circle is the expansion distance of the obstacle, and the second circle is the safe distance. 

To validate the effectiveness of the S-TEB local path planning algorithm, simulation experiments were 

conducted in the ROS system. The operating system utilized is Ubuntu 18.04, through the gazebo and RVIZ 

platform in ROS-melodic system co-simulation, in the gazebo platform to build the simulation environment and 

set up the physical simulation map, in the RVIZ platform to display the obstacles and the intelligent car model, 

the ORLMs trajectory through the ROS control. 

First, establish a map of the plowed path. The global path consists of smooth curves formed by connecting 

trajectory points. 

           
Fig. 8 - Simulation environment and map constructed by slam 

 

Subsequently, employing the aforementioned formula, the process of selecting control points ensues. 

These meticulously chosen control points are then integrated into the B-spline curve for optimization, resulting 

in the refinement of the local path. This iterative procedure seamlessly harmonizes mathematical precision 

with real-world application, culminating in a locally optimized trajectory tailored to the intricacies of the 

environment.  
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Through the fusion of algorithmic finesse and practical utility, the refined path intricately weaves through 

obstacles, ensuring optimal traversal efficiency and enhancing the navigational capabilities of the autonomous 

system. This meticulous optimization not only fosters smoother trajectory planning but also bolsters the 

system's adaptability and resilience amidst dynamic operational scenarios. 

The comparison between paths circumventing square and circular obstacles, as depicted in Fig. 9 and 

Fig. 10, reveals a notable distinction. The green line illustrates the path planned using the conventional TEB 

algorithm, while the red line signifies the path charted using the enhanced S-TEB algorithm. It is discernible 

from these illustrations that the path generated by the improved S-TEB algorithm exhibits enhanced 

smoothness and encompasses a larger coverage area compared to its traditional counterpart. 

           
Fig. 9 Comparison chart of path planning under square obstacle scenario 

 

             
Fig. 10 Comparison chart of path planning under circular obstacle scenario 

 

Experiment 

 
Fig. 11 – Local Path Planning Experiment to ORLMs 

 

 Standardized grape vineyards ensure a high degree of consistency in row spacing, plant spacing and 

pruning methods, which provides an ideal basis for orchard robots to work in and plan paths. Furthermore, the 

data collection and analysis of the standardized grape vineyard is more convenient. Consequently, the 

standardized grape vineyard is selected as the experimental environment for the orchard robot.  
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 Through continuous testing and optimizing in this environment, the mature technology solution can be 

gradually extended to other types of orchards or agricultural fields, thereby promoting the intelligent upgrading 

of the entire agricultural production process. The experimental test scenario mirrors the real-world operational 

conditions encountered by ORLMs and is set within a standardized grape vineyard environment. This scenario 

comprises two cylindrical obstacles and one cuboid obstacle strategically placed to simulate dynamic obstacles 

commonly encountered in agricultural settings. By replicating these realistic conditions, the performance of the 

robots in effectively navigating around obstacles can be thoroughly evaluated. This carefully designed 

experimental setup ensures that the outcomes accurately reflect the capabilities and effectiveness of the 

robotic systems in real-world agricultural applications. 

 In this series of scientific research experiments, a variety of sensors and intelligent control modules 

were integrated into the ORLMs. The RTK positioning system provides centimeter-level ultra-high-precision 

positioning, while the 64-line 3D LIDAR offers detailed obstacle information through its omni-directional field 

of view and high-precision detection capability. It is noteworthy that the ROS operating system was 

implemented on the Nvidia Jetson Orin NX hardware platform, which was paired with the VCU vehicle control 

unit to serve as the ORLMs's intelligent brain. 

 

     
Fig. 12 – Local Path Planning Experiment to ORLMs in the spring 

  

 The SLAM was adopted to construct a point cloud map and employ RTK (Real-Time Kinematic) 

devices for online localization. As shown in Fig. 13, a 3D point cloud map of the current scene is opened in 

Reconstruct Visualization Interface. This map is employed to delineate the effective identification area, which 

is instrumental in the process of identifying potential obstacles. Subsequently, the 2D Pose Estimate tool is 

employed. In order to approximate the location and orientation of the current vehicle on the map, it is necessary 

to remotely move the vehicle by a distance of between one and two meters. Concurrently, it is essential to 

monitor the alterations in the vehicle's coordinate system within the designated visualization area to ascertain 

the precision of the initialized vehicle position. The 2D Nav Goal tool is employed to select a target point on 

the map, and the TEB (Timed Elastic Band) global path planner will generate a global path from the starting 

point to the target point. 

 

 
Fig. 13 – The Point Cloud Plots from the experiment 
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 The ORLMs operated at a speed of approximately 0.6 m/s, traversing from a fixed starting point to a 

fixed endpoint. Within the program, both the traditional TEB and S-TEB algorithms were separately employed 

to replace the local path planning module, each followed by ten experimental obstacle avoidance tests. The 

obstacle conditions were based on the model depicted in Fig. 12, with a standardized grape vineyard 

environment featuring row spacing of 1.5 meters and a minimum distance of 4 cm from obstacles. Experimental 

parameter data were collected using ROS tools such as rqt and rosbag, and analyzed based on the evaluation 

metrics that were developed. The results, depicted in  Fig. 14. show that the coverage area increased by 

4.23%. To facilitate observation of data changes, the numerical values of the x-axis and y-axis coordinates 

underwent non-uniform scaling. 

 
Fig. 14 Comparison diagram of experimental paths 

 

 From the Fig. 14, it can be observed that neither of the two path planning methods resulted in collisions 

with obstacles. Compared to the traditional TEB algorithm, the motion planner of the proposed TEB-CA 

algorithm maintains a smaller distance relative to obstacles and covers a larger area of weed growth. 

Additionally, there is minimal fluctuation in speed and angle, ensuring stable control and reducing the 

probability of rollover during turning and obstacle avoidance. The planned travel path meets the dynamic 

constraint requirements of the mobile robot, with various state quantities changing accordingly. 

1. Obstacle Avoidance from Start to Goal: 

 The experimental results demonstrate the efficacy of the S-TEB algorithm in enabling the ORLMs to 

navigate from the starting point to the target point while effectively avoiding obstacles in the environment. 

Through real-world testing scenarios, the ORLMs successfully circumvented various obstacles encountered 

along the path, showcasing its robust obstacle avoidance capability. 

 2.  Enhanced Smoothness in Local Path Planning: 

 Incorporating the S-TEB algorithm into the ORLM's local path planning process yielded notable 

improvements in trajectory smoothness. By adjusting parameters such as velocity and acceleration profiles, 

the ORLMs was able to generate smoother paths, minimizing abrupt changes in direction and velocity. This 

enhanced smoothness not only contributes to the overall navigation efficiency but also ensures a more stable 

and predictable trajectory for the ORLMs. 

 3. Mowing Coverage Area Increases: 

 Analysis of the experimental data reveals that the implementation of the improved S-TEB algorithm has 

resulted in a notable enhancement in mowing coverage area, with a significant increase of 4.23%. 

 

CONCLUSIONS 

This paper optimizes the ORLMs local path planning algorithm by incorporating the B-spline curve time 

elastic band local path planning algorithm, and proposes the S-TEB algorithm for improved local path planning 

based on this optimization. 

 In this paper, the SLAM method was adopted to construct a point cloud map and utilized RTK (Real-

Time Kinematic) devices for online localization. In a standardized vineyard environment, two cylindrical 

obstacles and one cuboid obstacle were set up to evaluate the performance of robots in avoiding dynamic 

obstacles.  
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 The experimental results demonstrate that the paths planned using the improved S-TEB algorithm 

exhibit smoother trajectories and cover a larger area compared to those generated by the traditional TEB 

algorithm, showcasing enhanced navigation capabilities. This research provides valuable insights and 

guidance for autonomous navigation of agricultural robots in complex environments. 

 While this study successfully explores the effectiveness of the improved S-TEB algorithm in the local 

path planning of ORLMs and demonstrates a significant improvement with a 4.23% increase in coverage area, 

there are still areas that require further investigation. Specifically, this research did not analyze dynamic 

obstacles, which could be a crucial factor in actual orchard environments. Therefore, future research could 

consider expanding the scope of experiments to include in-depth analysis and testing of dynamic obstacles to 

comprehensively assess the performance of ORLMs in real orchard operations. Additionally, further 

optimization of algorithm parameters and path planning strategies could enhance the navigation efficiency and 

stability of ORLMs. Overall, while this study provides valuable insights for the development of orchard robot 

technology, there are still many directions to explore and improve upon to achieve higher levels of autonomy 

and operational efficiency. 
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