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ABSTRACT 

Accurate prediction of environmental changes in Agaricus bisporus cultivation is essential for better managing 

climatic conditions within mushroom houses, ultimately enhancing the yield and quality of Agaricus bisporus. 

However, traditional control systems for Agaricus bisporus production environments can only monitor the 

current conditions and lack the ability to predict environmental changes, leading to issues such as delayed 

feedback on environmental data and the effectiveness of control measures. In response to these challenges, 

this study establishes a temperature and humidity prediction model based on the DOA-BP algorithm. 

Experimental results demonstrate that the DOA optimization algorithm exhibits strong global search 

capabilities. By rapidly searching for optimal weights and biases, it overcomes the drawback of the BP neural 

network getting stuck in local minima, accelerates network convergence, and improves the performance of the 

BP neural network. The MAE values for temperature and humidity prediction inside the mushroom house are 

0.021 and 0.013, respectively. The RMSE values are 0.044 and 0.038, respectively, and the R2 values are 

0.976 and 0.968, respectively. Through validation, the DOA-BP temperature and humidity prediction model 

proposed in this study accurately predicts the temperature and humidity inside mushroom houses. This model 

can enhance environmental control for cultivation, optimize resource utilization, and reduce production costs 

effectively. 

 

摘要 

精准预测双孢菇生产环境变化有助于更好的管理菇房内的气候条件，提高双孢菇产量与质量。但传统的双孢菇

生产环境控制系统只能对当前环境状况进行监测，无法对环境变化做出预判，导致环境数据的反馈和调控措施

的生效都存在滞后性等问题。针对以上问题，本文建立了基于 DOA-BP 的温湿度预测模型，实验结果表明，DOA

优化算法具有较强全局搜索能力，通过快速搜索最优权值和偏置，克服了 BP 神经网络陷入局部极小值的缺点，

 加快网络收敛速度，提高了 BP 神经网络的性能。该预测模型对菇房内温湿度预测的 MAE 值分别为 0.021、

0.013，RMSE 值分别为 0.044、0.038，R2 值为 0.976、0.968。通过验证，本研究提出的 DOA-BP 温湿度预

测模型能够精准预测菇房温湿度，可以更好的控制栽培环境，还可以合理安排资源利用，降低生产成本。 

 

INTRODUCTION 

To achieve precision, standardization, and year-round production of Agaricus bisporus, the rapid 

development of environmentally controlled closed-system factory production is evident (Mao et al., 2018). 

Temperature and humidity, as crucial environmental factors in the growth process of Agaricus bisporus, play 

a significant role throughout the entire cultivation cycle, directly influencing the quality and yield of Agaricus 

bisporus. Closed mushroom house environmental control systems can analyse and make regulatory decisions 

on monitored environmental factors. However, they lack the capability to predict future environmental changes, 

resulting in a certain lag in the feedback of abrupt environmental data and the effectiveness of control 

measures (Zhao et al., 2020).  
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Therefore, establishing a high-precision prediction model with temperature and humidity as output 

variables is crucial. This model aims to anticipate the changing trends of temperature and humidity within the 

mushroom house over a future period, allowing timely adjustments to maintain optimal conditions for stable 

Agaricus bisporus production. 

Greenhouse microclimate prediction models can be categorized into mechanistic models and data 

models (Chen et al., 2017). Mechanistic models simulate and predict greenhouse environmental conditions 

based on fluid dynamics and heat and mass transfer mechanisms (Zhou et al., 2014). However, due to the 

dynamic interdependence of various environmental factors within the greenhouse, these models require 

extensive physical parameters and environmental data, leading to challenges such as complex modelling and 

poor adaptability (Saberian et al., 2019). 

Data models, also known as black boxes, employ data fitting algorithms to ensure the predicted values 

align with actual values (Wang et al., 2009). Previous studies, such as that by Zong et al., (2022), utilized 

multiple linear regression, support vector machine regression, and random forest regression to construct 

nighttime hourly temperature prediction models under three different weather conditions in the greenhouse. 

Zou Weidong et al., (2015), improved the extreme learning machine for predicting temperature and humidity 

in a sunlight greenhouse.  

Mao Xiao Juan et al., (2023), proposed a grey wolf optimization algorithm-based long short-term 

memory network model for greenhouse temperature prediction. However, these models were limited by a finite 

number of samples, and some were only studied under specific seasons or meteorological conditions, 

restricting their generalization capabilities.  

Tian et al., (2020), proposed a combination method of MA-ARIMA-GASVR based on mining historical 

temperature data time-series information to establish a temperature prediction model. However, this model is 

relatively complex, demanding substantial computational resources and time, limiting its practical application. 

Zu et al., (2023), introduced a sparrow search algorithm (SSA)-optimized long short-term memory 

network (LSTM) greenhouse environment prediction model. Yet, the limited local search capabilities of this 

optimization algorithm may lead to local optimal solutions, impacting the model's overall search capabilities 

and optimization effectiveness.  

Zhang et al., (2021), established an Elman neural network prediction model based on collected 

environmental historical data. However, this model may encounter challenges such as gradient vanishing or 

exploding when predicting long time series, making it difficult to stabilize training networks and affecting 

predictive performance. 

The aforementioned studies share common issues, including limited coverage of sample data, biased 

model selection, complexity, and susceptibility to locally optimal solutions (Johnstone et al., 2021). In this paper, 

a DOA-BP-based industrial production environment prediction model for Agaricus bisporus was proposed. 

With the advantages of the DOA optimization algorithm, such as strong global search ability, parallelism and 

simplicity, the weight and bias of the BP network were accelerated to optimize, and environmental data of 

different regions of mushroom houses were collected through multiple groups of sensors. The 3sigma criterion 

and linear interpolation method were used to process the original data, and the input matrix of the processed 

environmental data was constructed according to the time series and input into the DOA-BP model for training, 

to achieve the accurate prediction of the production environment of the Agaricus bisporus.  
This study compares the total energy consumption and environmental data between Mushroom House 

28, which uses temperature and humidity data predicted by the DOA-BP model for climate control, and 

Mushroom House 29, which uses real-time sensor data for climate control. The results show that Mushroom 

House 28's temperature control equipment consumed 10.8% less total energy, and its humidification 

equipment consumed 15.4% less total energy compared to Mushroom House 29. Overall, Mushroom House 

28's total energy consumption was 12.6% lower than that of Mushroom House 29. Additionally, the temperature 

and humidity in Mushroom House 28 remained stable and within optimal ranges, while Mushroom House 29 

also maintained optimal temperature and humidity ranges, but with greater fluctuations. 

The remaining sections of this article are organized as follows. In the second section, the DOA and BP 

algorithms are individually elaborated, and the fusion process of the two algorithms is summarized. The third 

section discusses the source and processing methods of the required data. In the fourth section, validation of 

the fusion algorithm is conducted, and its practical application in the field is demonstrated. The conclusion of 

this article is presented in the fifth section. 
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MATERIALS AND METHODS 

DOA-BP ENVIRONMENTAL PREDICTION MODEL 

DOA optimization algorithm 

The Dingo Optimization Algorithm (DOA), proposed by Hernán Peraza-Vázquez and colleagues in 2021, 

is a novel bio-inspired algorithm (Hernán et al., 2021). This algorithm draws inspiration from the hunting 

strategies of wild dingoes in Australia, including group attacks, grouping strategies, scavenging behaviour, and 

the incorporation of survival tactics (Cai et al., 2023). These additions enhance the overall efficiency and 

performance of the method, endowing it with strong optimization capabilities and rapid convergence speed. 

 

The fundamental mathematical model of the algorithm is as follows. 

1. Population Initialization 

 ( ) ( ) ( ( ) ( ))i i i ix t lb t rand ub t lb t= + −  (1) 

where �⃗�𝑖(𝑡) represents the position of the current optimizing individual, whose value varies between the lower 

search boundary 𝑙𝑏𝑖  and the upper search boundary 𝑢𝑏𝑖  of the Australian wild dog individual; t is the 

iteration number, rand is a randomly generated number uniformly distributed between [0,1]. 

 

2. Hunting strategy 

1) Group Attack: Australian dingoes engage in coordinated group attacks when hunting large prey. They 

work together to locate the prey's position and surround it for a group attack. As illustrated in Figure 1, this 

behaviour can be described by (2). 
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When random < P and random < Q are satisfied. Where random is a uniformly generated random 

number in the range [0,1], and P and Q are the probability values for the dingo population to execute their 

respective strategies. In this context, �⃗�𝑖(𝑡 + 1) represents the new position of an individual, 𝑛𝑎 is a randomly 

generated integer inversely proportional to [2, sizepop/2], where sizepop is the total population size. 

Additionally, �⃗⃗�𝑘(𝑡) denotes the set of individuals that will attack, with 𝜑 ∈ 𝑋, where X is a randomly generated 

dingo population. �⃗�𝑖(𝑡) is the current optimizing individual, �⃗�∗(𝑡) is the best individual found in the previous 

iteration, and 𝛽1 is a uniformly generated random number in the range [-2,2], serving as a scaling factor for 

the magnitude of individual movement trajectories. 

 

 
Fig. 1 - Group Attack Strategy 

 

2) Persecution Strategy: Australian dingoes, when hunting small animals such as rabbits, employ a 

strategy where individual dingoes continuously pursue and approach the prey until it is captured individually. 

This behaviour can be described by (3). 

 2

* 1 1( 1) ( ) * *( ( ) ( ))i r ix t x t e x t x t
+ = + −  (3) 

When random < P is satisfied the following actions are executed.�⃗�𝑖(𝑡 + 1) represents the new position 

of the individual, where �⃗�𝑖(𝑡) is the current optimizing individual, and �⃗�∗(𝑡) is the best individual found in the 

previous iteration. 𝛽1 is the same as in (2), and β2 is a uniformly generated random number in the range [-

1,1]. r1 is a random number generated from the range [1, sizepop], and�⃗�𝑟1
(𝑡) is the position of the randomly 

selected individual at index 𝑟1, where 𝑖 ≠ 𝑟1. 
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3) Scavenging: Australian dingoes exhibit scavenging behaviour when randomly wandering in their 

habitat and come across carrion as a food source. This behaviour can be described by (4). 

 2

1

1
( 1) * ( ) ( 1) * ( )

2
i r ix t e x t x t

  + = − −   (4) 

When random > P is satisfied. the following actions are executed. �⃗�𝑖(𝑡 + 1) represents the new position 

of the individual, where �⃗�𝑖(𝑡)  is the current optimizing individual. �⃗�𝑟1
(𝑡)  is the position of the randomly 

selected individual at index𝑟1, where𝑖 ≠ 𝑟1. 𝛽2is the same as in (3), and σ is a uniformly generated random 

number in the range [0,1]. 

4) Survival Strategy: Due to reasons such as illegal hunting, Australian dingoes are facing the risk of 

extinction. The survival rate of Australian dingoes is described by (5). (6) is applicable when the survival rate 

is less than or equal to 0.3. 
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Where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑎𝑥 and 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑖𝑛 are the fitness values of the best and worst individuals in the current 

generation, and 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) is the current fitness value of the ith individual. The training data error absolute 

value is used as the individual fitness value, where �⃗�𝑖(𝑡) represents the dingo individual with a lower survival 

rate that will be updated. 𝑟1 and 𝑟2are random numbers generated within the range [1, sizepop], and 𝑟1 ≠ 𝑟2. 

�⃗�∗(𝑡) is the best individual found in the previous iteration. 

Bp neural network 

BP neural network is a concept proposed by Rumelhart et al. and other scientists in 1986. Each layer 

of neurons is fully connected with the adjacent layer of neurons, and there is no connection between neurons 

in the same layer and no feedback connection between neurons in each layer. It is a feedforward neural 

network system with hierarchical structure trained according to the error reverse propagation algorithm (Xu et 

al., 2017). Its training algorithm is simple, can handle various types of data, and has good adaptability to 

nonlinear problems (Huang et al., 2020). 

This paper adopts a three-layer BP neural network, consisting of the input layer, hidden layer, and output 

layer. The number of nodes in the input and output layers is set to 6 and 2, respectively. The number of nodes 

in the hidden layer is determined based on the empirical formula (Ding et al., 2023) (7). 

 j m n a= + +  (7) 

In the formula, 𝑛 represents the number of nodes in the input layer, 𝑚 is the number of nodes in the 

output layer, 𝑗 is the number of nodes in the hidden layer, based on experience, choosing a between 1 and 

10 often helps to find a balance between computational efficiency and model accuracy. According to (7), the 

preferred range for 𝑗 is 4 to 13. 

Figure 2 shows the topology of BP neural network, where h is the output of the hidden layer, Y is the 

output of the output layer, 𝑊𝑖𝑗 is the weight between the jth neuron of the hidden layer and the i neuron of the 

input layer, 𝑏𝑗 is the bias of the j th neuron of the hidden layer, and 𝑊𝑖𝑗 is the weight between the j th neuron 

of the hidden layer and the l neuron of the output layer. 𝑏1 and 𝑏2 are the bias of neurons in the output layer. 
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Fig. 2 - Structure of BPNN network 
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DOA-BP network fusion model 

In the BPNN model, weights and biases play a crucial role in the model's fitting capability. In traditional 

BPNN models, weights and biases are typically set randomly based on empirical experience, which may lead 

the model to get stuck in local minima during network training, making it challenging to achieve optimal 

performance. Therefore, the DOA optimization algorithm is employed, known for its robust global search 

capabilities. Through hunting and survival strategies, optimal parameters are obtained for assigning and 

training the weights and biases of the BP neural network. This approach helps overcome the drawback of 

susceptibility to local minima, accelerates network convergence, and enhances the performance of the neural 

network. The algorithmic process is illustrated in Figure 3, and the specific steps are outlined below. 

(1) DOA Initialization: Initialize individual positions by randomly generating a certain number of dingo 

individuals within the boundary conditions of the search space. Set their positions as random combinations of 

weights and biases. 

(2) Fitness Evaluation: Input historical environmental data and perform forward propagation through the 

BP neural network to generate predicted values. Calculate the prediction error of each individual corresponding 

to the BP neural network, and evaluate the fitness of each individual using the loss function. 

(3) Selection and Replication: Select individuals with better performance based on their fitness values. 

Retain these individuals for generating the next generation, and replicate the selected individuals to maintain 

the population size. 

(4) Update Individual Positions: Update individual positions through group attacks, grouping strategies, and 

scavenging behaviour, ensuring that the updated positions do not exceed the allowable range of weights and biases. 

(5) Convert the updated individual positions into combinations of weights and biases, and apply them to 

the BPNN model. Evaluate the positions through the fitness function to identify the individual with the optimal fitness. 

(6) Update the Best Individual: Select the dingo individual with the best fitness value in the population 

as the current best individual. Record and update the global optimum solution. 

(7) Check whether the set error or maximum iteration conditions are met. If satisfied, set the global 

optimal weights and biases as the parameters for the BPNN. If not satisfied, return to step (2). 

(8) Model Prediction: Input new environmental data into the optimized BP neural network. Generate 

prediction results through forward propagation. Output the predicted temperature and humidity values. 

(9) Model Evaluation and Validation: Evaluate the predictive performance of the model using a test 

dataset and calculate error metrics. 

Through these steps, the weights and biases of the BP neural network will be set to search and optimize 

in the solution space of the DOA. By iteratively updating individual positions, the algorithm eventually finds the 

individual with the minimum fitness value, and its corresponding weights and biases are considered as the 

optimal parameters for the BPNN model. 
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Fig. 3 - DOA-BPNN Flowchart 
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Model evaluation metrics 

To provide a visual representation of the predictive performance and accuracy of the model, the mean 

absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) are selected as 

performance evaluation metrics for the model (Liang et al., 2023). Here, N represents the number of test 

samples, 𝑦𝑖 is the actual value, �̂�𝑖 is the predicted value, and �̅�𝑖 is the mean value. 

 

1

1 N

i i

i

MAE y y
N =

= −  (8) 

 
2

1

1
( )

N

i i

i

RMSE y y
N =

= −  (9) 

 

2

2 1

2

1

( )

( )

N

i ii

N

i iI

y y
R

y y

=

=

−
=

−




 (10) 

 

DATA SOURCE AND PROCESSING 

Overview of the experimental area 

The experimental site is located at the Shandong Century Smart Agriculture Technology Co., Ltd. 

Agaricus bisporus Cultivation Base in Jining City, Shandong Province, China, specifically in Mushroom House 

No. 28 (35.224°N, 116.929°E). The mushroom house measures 18 m in length, 6.5 m in width, and 4.6 m in 

height. It is constructed using 100 mm thick polyurethane insulation boards, with a ground surface of 180 mm 

thick cement hardening. Each mushroom house has an area of approximately 117 m2 and is equipped with 

two sets of aluminium alloy planting racks. These racks are 15 m long, and 1.4 m wide in planting face, with a 

layer height of 600 mm, totalling 6 layers. 

The mushroom house is equipped with an intelligent temperature control system, humidification system, 

and ventilation system. When the temperature changes, the temperature control system activates the air 

conditioning through an S-shaped temperature control pipeline. In case of an increase in carbon dioxide 

concentration, the ventilation system extracts air from the mushroom house through the return air vent and 

introduces fresh air through the fresh air vent. When humidity decreases, the humidification system is activated, 

and the solenoid valve is opened for spray humidification. 

Internet of Things data acquisition system 

Build a greenhouse environment loT data acquisition system, real-time and accurate. Obtaining 

environmental information is the premise and guarantee of realizing greenhouse environmental prediction. The 

IoT data-acquisition system mainly consists of a CPU (Teik et al., 2021), perception module and the 

transmission module is composed of the sensing module to complete the air temperature and relative humidity. 

Measurement of degree, carbon dioxide concentration and soil temperature and humidity, complete the 

collection of air conditioner on/off status. The relevant parameters of the sensor are shown in Table 1. The 

overall system architecture is shown in Figure 4. 

 

 
Fig. 4 - Lot system architecture diagram 
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Fig. 5 - Three-dimensional map of sensor layout position 

 

To ensure the accuracy of collecting environmental data in the mushroom house, the following sensor 

layout scheme is employed: Two sets of planting racks (15 m, 6 layers each), sensors are placed at 5 m 

intervals on 1st layer of Planting Rack #1 (1#1), 3rd layer of Planting Rack #1 (1#3), 5th layer of Planting Rack 

#1 (1#5), 2nd layer of Planting Rack #2 (2#2), 4th layer of Planting Rack #2 (2#4), and 6th layer of Planting 

Rack #2 (2#6). Air temperature and humidity sensors are placed on the west side of A#4 (1st layer, 4th layer 

of Planting Rack #1), east side of B#1 (1st layer of Planting Rack #1), and east side of C#3 (3rd layer of 

Planting Rack #2). CO2 sensors are placed on the west side of A#2 (2nd layer of Planting Rack #1), east side 

of B#4 (4th layer of Planting Rack #2), and east side of C#1 (1st layer of Planting Rack #2). 

This optimized sensor layout maximizes the sensing range, reduces blind spots and overlapping areas, 

avoids resource waste and redundancy, and enhances detection accuracy and reliability. 

The schematic diagram of the sensor deployment positions is shown in Figure 5, where the top left 

corner represents the overall three-dimensional view of the mushroom house, the top right corner is the main 

view of the mushroom rack, and the bottom shows the side view of Planting Rack #1. During the experiment, 

two sets of planting racks inside the mushroom house were used for the cultivation of Agaricus bisporus using 

the covered soil cultivation method, and the mushrooms were in the fruiting body growth stage (mushrooming 

stage and mushrooming period). The experimental site is illustrated in Figure 6. 

 

a) 
 

b) 
 

c) 

Fig. 6 - Interior environment of mushroom house 

a) East aisle; b) Centre aisle; c) West aisle 

Table 1 
Sensor parameters 

Sensor type Model Range Precision 

Air temperature and 
humidity sensor 

RS-WS-N1-2-* 
Temperature: -40℃~+80℃ 
Humidity:0%RH~100%RH 

Temperature: ±0.4℃ 
Humidity: ±2%RH 

CO2 sensor RS-CO2*-*-2 0-5000ppm ±30ppm+3％F.S 

Soil temperature 
and humidity sensor 

RS-WS-*-TR-1 
Temperature: -40℃~+80℃ 
Humidity:0%RH~100%RH 

Temperature: ±0.5℃ 
Humidity: ±3%RH 

 

Data collection and preprocessing 

Data collection 

Through the intelligent data collection system, automatically collect six types of data: air temperature, 

air humidity, soil temperature and humidity, CO2 concentration, and air conditioner on/off status (0/1), was 

conducted from May 3, 2023, to June 7, 2023. This period corresponds to the fruiting body growth stage of 

Agaricus bisporus (fruiting stage and mushrooming period). The sampling interval was 10 minutes, resulting 

in 5040 data points for a single environmental parameter and a total of 30,240 data points.  

javascript:;
javascript:;
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The environmental data from May 3, 2023, to June 1, 2023, were used as the training set, while the data 

from June 2, 2023, to June 7, 2023, were used as the validation set for model verification. Some raw data, as 

illustrated in Figure 7 (taking the temperature data from May 3, 2023, to May 18, 2023, as an example), indicate 

the presence of missing data and instances of abrupt temperature changes to zero. 

 
Fig. 7 - Partial raw data 

Data preprocessing 

Exposing sensors to prolonged high-humidity environments in the mushroom house can affect their 

accuracy. Additionally, issues such as network transmission quality and control equipment malfunctions may 

lead to anomalies and data gaps, impacting the accuracy of the prediction model. In this study, the 3-sigma 

criterion is employed to eliminate outliers from the collected raw data, and linear interpolation is used to impute 

missing data. As shown in Figure 8 (taking the temperature data from May 3, 2023, to May 18, 2023, as an 

example), the upper part displays temperature data after removing outliers, while the lower part shows 

temperature data after interpolation. 

 
Fig. 8 - Data preprocessing 

Data normalization 

Normalization of data eliminates differences in range and dimensionality among various environmental 

parameters within the mushroom house, enhancing the stability, accuracy, and efficiency of the model. This 

ensures consistent weights for features, thereby better adapting to the modelling process (Liang et al., 2023). 

 
min

max

i i
i

i i

x x
X

x x

−
=

−
 (11) 

Here, 𝑋𝑖 represents the normalized value, and 𝑥𝑖 is the environmental data within the sample dataset 

X. 𝑥𝑖𝑚𝑖𝑛 and 𝑥𝑖𝑚𝑎𝑥 represent the minimum and maximum values of the data belonging to the sample before 

normalization. 

TEST 

Test platform 

The platform configuration used for training is as follows: operating system Windows 10 Professional 

64-bit, processor 12th Gen Intel Core i9-12900KF, graphics card NVIDIA GeForce RTX 3090, and memory 

128GB. The programming software used is Matlab R2023a. 
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Model parameter settings 

The parameter settings are as follows: In the DOA optimization model, a larger population size can 

expand the search space and improve global search capabilities, but it increases computational complexity. 

Set the total number of dingoes to 200. The probability of hunting or scavenging strategy, P, is set to 0.5, and 

the probability of group attack or persecution, Q, is set to 0.7. The search boundaries define the range of 

individual searches for new solutions. A larger search boundary can expand the search space, aiding global 

search but may slow down the search speed. The upper and lower search boundaries of the population 

individuals, 𝑙𝑏𝑖 and 𝑢𝑏𝑖, are set to -10 and 10, respectively. 

The selected three-layer BP neural network model has an input layer with 6 nodes and an output layer 

with 2 nodes. Through program execution, under the same sample set and number of training iterations, the 

root mean square error (RMSE) for different numbers of hidden layer nodes is calculated, as shown in Figure 

9. When the number of hidden layer nodes is 14, the RMSE is minimized. 

Therefore, the BP neural network model is configured with 14 hidden layer nodes, and the activation 

function for each neuron is the sigmoid function:𝜎(𝑥)  =  1/(1 + 𝑒^(−𝑥)). The loss function used is the mean 

square error 𝐸 =
1

2
∑ (𝑑𝑙 − 𝑦𝑙)2𝑘

𝑙=1 , with a learning rate ε set to 0.01. The training target for the minimum error 

is set to 0.0001, and the time step, determining the utilization of historical information and model prediction 

performance, is set to 15. The maximum number of iterations is set to 1000. The parameter settings for the 

DOA-BP prediction model are summarized in Table 2. 

 
Fig. 9 - Root mean square error corresponding to node number of different hidden layers 

 

Table 2 

Model parameter Settings 

Name of parameter Parameter values 

Population quantity 200 

Probability of P 0.5 

Probability of Q 0.7 

Learning rate 0.01 

Network layer number 3 

Input layer node 5 

Hidden layer node 13 

Output layer node 2 

Time step 15 

Search boundary -10~10 

Target minimum error 0.001 

Maximum number of 
iterations 

1000 
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RESULT AND ANALYSIS 

Data preprocessing impact analysis 

Table 3 presents a comparative analysis of the DOA-BP prediction model's temperature forecasting 

performance before and after data preprocessing. From the table, it can be observed that, after data 

preprocessing, the DOA-BP model's Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for 

temperature prediction decreased by 0.005 and 0.057, respectively, compared to before preprocessing. The 

coefficient of determination (R2) increased by 0.075. Similarly, for humidity prediction, the MAE and RMSE 

decreased by 0.009 and 0.0047, respectively, and R2 increased by 0.057. This indicates that data missing and 

anomalies have a negative impact on the prediction model, demonstrating the effectiveness of using the 3-

sigma criterion and linear interpolation for data preprocessing. 

Table 3 

Comparative analysis of DOA-BP prediction model's effect on temperature prediction before  

and after data preprocessing 

Temperature MAE RMSE R2 

Before repair 0.026 0.101 0.901 

After restoration 0.021 0.044 0.976 

Humidity MAE RMSE R2 

Before repair 0.022 0.085 0.911 

After restoration 0.013 0.038 0.968 

Prediction results and comparative analysis 

The obtained DOA-BP prediction model was used to forecast the temperature and humidity inside the 

mushroom cultivation facility for the next 5 days. The results are depicted in Figure 10.  

 
a humidity prediction 

 
b temperature prediction 

Fig. 10 - Prediction results of temperature and humidity in mushroom house based on DOA-BP 

 

The DOA-BP model achieved R2, MAE, and RMSE values of 0.976, 0.021, and 0.044 for temperature 

prediction, respectively. For humidity prediction, the model achieved R2, MAE, and RMSE values of 0.968, 

0.013, and 0.038, respectively. 

To validate the scientific and superior performance of the proposed DOA-BP neural network prediction 

model, this study conducted a comparative analysis of predictive performance with BP neural network, genetic 

algorithm optimized BP neural network (GA-BP), and particle swarm optimization optimized BP neural network 

(PSO-BP) under the same input parameters and computational environment. 

As seen in Table 4, For humidity prediction, the R2 of DOA-BP model increased by 8.3%, 5.9%, and 5.4% 

compared to BP model, GA-BP model, and PSO-BP model, respectively. Moreover, the MAE and RMSE 

decreased by 12.5%, 54.2% compared to BP model, 30%, 48.2% compared to GA-BP model, and 8.7%, 46.9% 

compared to PSO-BP model. As seen in Table 5, for temperature prediction in the mushroom cultivation facility, 

the R2 of DOA-BP model increased by 6%, 4.6%, and 4.4% compared to BP model, GA-BP model, and PSO-

BP model, respectively. Additionally, the MAE and RMSE decreased by 35%, 56.3% compared to BP model, 

40.9%, 51.9% compared to GA-BP model, and 38.1%, 51.3% compared to PSO-BP model.  
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 The number of iterations in which the best performance of each model for temperature and humidity 

prediction appears respectively were 132 and 174 for DOA-BP, 352 and 326 for BP, 205 and 241 for GA-BP, 

and 197 and 225 for PSO-BP. In conclusion, the DOA-BP model demonstrated superior predictive 

performance, accurately forecasting temperature and humidity in the mushroom cultivation facility, while also 

improving model efficiency. 

Table 4 

Comparison of humidity evaluation indexes predicted by models 

Model(humidity) MAE RMSE R2 Iterations 

BP 0.020 0.087 0.913 352 

GA-BP 0.023 0.079 0.925 205 

PSO-BP 0.021 0.078 0.927 197 

DOA-BP 0.013 0.038 0.968 132 

Table 5 

Comparison of temperature evaluation indexes predicted by models 

Model(temperature) MAE RMSE R2 Iterations 

BP 0.024 0.096 0.912 316 

GA-BP 0.030 0.085 0.922 241 

PSO-BP 0.023 0.083 0.926 225 

DOA-BP 0.021 0.044 0.976 174 

 

Experimental validation 

Mushroom house No. 28 and Mushroom house No. 29 of the mushroom culture base of Shandong 

Century Smart Agricultural Technology Co., LTD., Jining City, Shandong Province, were selected. The two 

mushroom houses were in the fruiting stage, and the suitable temperature range was 20-24℃ and the suitable 

humidity range was 80-85%. The automatic environmental control system of mushroom room No. 28 uses the 

temperature and humidity data predicted by the DOA-BP model to adjust temperature and humidification, while 

the automatic environmental control system of mushroom room No. 29 directly adjusts temperature and 

humidification according to the real-time sensor data. The observation time is from July 1, 2023 to July 4, 2023, 

and the environmental data is collected every 10 minutes. Record the total power consumed by the device. 

The total electric energy consumption and environmental data of the equipment in Room No. 28 and Room 

No. 29 were compared and analysed. As shown in the table 5, the total electric energy consumed by the 

temperature regulating equipment in Room 28 is reduced by 10.8% compared with room 29, the total electric 

energy consumed by the humidifying equipment is reduced by 15.4% compared with room 29, and the total 

electric energy is reduced by 12.6% compared with room 29. 

Figure 11 shows the temperature data and humidity data of mushroom room No. 28 and No. 29 within 

5 days. The overall temperature and humidity of mushroom room No. 28 changed steadily, and always kept 

within the appropriate temperature and humidity range; Room No. 29 kept the overall temperature and humidity 

within the appropriate range. But the temperature and humidity change range was large. 

Based on the above analysis, the DOA-BP temperature and humidity prediction model proposed in this 

study can accurately predict the temperature and humidity of mushroom houses, which can better control the 

cultivation environment, rationally arrange the utilization of resources, and reduce the production cost. 

Table 6 

Power consumption of equipment 

Room 
thermostat consumes 

electricity（KW*h） 

humidifier consumes 
electrical energy 

（KW*h） 

Total electric 

energy（KW*h） 

Mushroom house No. 28 371 231 602 

Mushroom house No. 29 416 273 689 
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a temperature data from room 28 

 

 
b temperature data from room 29 

 
c humidity data from room 28 

 
d humidity data from room 29 

Fig. 11 - The change of the overall temperature and humidity of the mushroom house 

 

CONCLUSIONS 

(1) The temperature and humidity prediction model for the industrialized production of Agaricus bisporus 

based on the DOA-BP proposed in this study utilizes the strong global search capability of the DOA 

optimization algorithm to perform rapid search and optimization of the weights and thresholds of the BP neural 

network. This approach addresses issues such as low model prediction accuracy resulting from manually 

setting weights and biases through random empirical methods. It helps overcome the drawbacks of easily 

falling into local minima, accelerates network convergence, and improves the overall performance of the neural 

network. 

(2) The greenhouse environment Internet of Things data acquisition system is used to obtain 

environmental information in real-time and accurately. At the same time, the abnormal environmental data 

collected is eliminated based on the 3sigma criterion, and the missing data is interpolated by the linear 

interpolation method. The input matrix of the processed environmental data is constructed according to the 

time series and input into the DOA-BP model for training. The accuracy of temperature and humidity prediction 

is significantly improved by the model, which provides a guarantee for realizing the accurate prediction of the 

greenhouse environment. 

(3) Experimental results indicate that the model achieves determination coefficients (R2) of 0.976 and 

0.968 for temperature and humidity predictions, respectively. The performance surpasses that of BP neural 

networks, genetic algorithm-optimized BP neural networks, and particle swarm optimization-optimized BP 

neural networks. While enhancing prediction accuracy, the model also considers operational efficiency, thus 

improving the overall predictive performance. It exhibits notable superiority in predicting the temperature and 

humidity of the Agaricus bisporus production environment. 

(4) Through validation, the DOA-BP temperature and humidity prediction model proposed in this study 
accurately forecasts the conditions in mushroom houses. It enables better control of cultivation environments 
and facilitates efficient resource allocation, thereby reducing production costs. 
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