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ABSTRACT  

Aquaculture, as a dynamic field, undergoes continuous evolution requiring continuous improvements in 

efficiency and new research efforts. Estimating fish biomass is an essential practice in the field of precision 

aquaculture, obtaining periodic information on fish biomass has been identified as an urgent need, considering 

the objective of optimizing daily feeding, controlling fish density and finally determining the optimal timing of 

harvesting. Conventional weighing methods, which often rely on manual procedures, have inherent 

challenges. Manual weighing processes are labor-intensive, requiring substantial time and human resources. 

Furthermore, manual handling of fish during weighing procedures induces considerable stress on aquatic 

organisms, potentially compromising their health and welfare. Consequently, there is a pressing need in the 

aquaculture industry to explore alternative weighing techniques that alleviate stress levels while increasing 

operational efficiency. In response to these challenges, contemporary research efforts have increasingly 

focused on the development of noninvasive and automated weighing methodologies. These innovations aim 

to simplify the weighing process, minimize human intervention and reduce the level of stress experienced by 

the fish population. However, estimating fish biomass without human intervention presents significant 

challenges because fish are sensitive and move freely in an environment where visibility, lighting, and stability 

are difficult to control. The paper analyzes technological solutions for biomass estimation according to the 

concept of Aquaculture 4.0. 

 

REZUMAT 

Acvacultura, ca domeniu dinamic, suferă o evoluție continuă, necesitând îmbunătățiri continue ale eficienței și 

eforturi noi de cercetare. Estimarea biomasei piscicole este o practică esențială în domeniul acvaculturii de 

precizie, obținerea de informații periodice asupra biomasei piscicole a fost identificată ca o necesitate urgentă, 

având în vedere obiectivul de optimizare a hrănirii zilnice, controlul densității peștilor și, în final, determinarea 

momentului optim de recoltare. Metodele convenționale de cântărire, care se bazează adesea pe proceduri 

manuale, prezintă provocări inerente. Procesele manuale de cântărire necesită multă muncă, necesită timp și 

resurse umane substanțiale. Mai mult, manipularea manuală a peștilor în timpul procedurilor de cântărire 

induce un stres considerabil asupra organismelor acvatice, putând compromite sănătatea și bunăstarea 

acestora. În consecință, există o nevoie presantă în industria acvaculturii de a explora tehnici alternative de 

cântărire care atenuează nivelurile de stres, sporind în același timp eficiența operațională. Ca răspuns la 

aceste provocări, eforturile de cercetare contemporane s-au concentrat din ce în ce mai mult pe dezvoltarea 

metodologiilor de cântărire neinvazive și automate. Aceste inovații urmăresc să simplifice procesul de 

cântărire, să minimizeze intervenția umană și să reducă nivelul de stres experimentat de populația de pești. 

Cu toate acestea, estimarea biomasei de pești fără intervenția umană prezintă provocări semnificative, 

deoarece peștii sunt sensibili și se mișcă liber într-un mediu în care vizibilitatea, iluminarea și stabilitatea sunt 

greu de controlat. Lucrarea discută soluții tehnologice pentru estimarea biomasei conform conceptului de 

Acvacultură 4.0. 

 

INTRODUCTION 

 Aquaculture consists of a set of activities, knowledge and techniques for growing plants and some 

species of aquatic animals, having a particular importance in economic development and food production. 
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Aquaculture is experiencing rapid growth globally, driven by two significant factors: the persistent increase in 

demand for seafood and the depletion of fish stocks in the world's oceans. This surge in aquaculture activity 

underscores the urgent need for sustainable practices to avoid the pitfalls encountered in the history of 

European agriculture and fisheries sectors. (FAO, 2018; Paolacci et al., 2022; Varadi et al., 2009). 

 To date, traditional methodologies for estimating fish biomass have predominantly relied on manual 

sampling techniques. However, these approaches are frequently invasive, time-consuming, and require 

substantial human resources. Consequently, there exists a compelling and pressing necessity to devise 

noninvasive, swift, and cost-effective alternatives for this estimation process. Emerging technologies such as 

Machine Vision, acoustics, ambient DNA, among others, offer promising avenues for the creation of non-

intrusive, expedited, and economically viable methods to estimate fish biomass in real-world scenarios 

(Henriksson et al., 2021; Orduna et al., 2023; Berckmans, 2017; Yule et al., 2013; Cowley and Whitfield, 2002). 

 Experimental research has underscored the pivotal role of information technologies, particularly 

advanced sensors and communication technologies, in expediting the evolution of new tools and 

methodologies aimed at enhancing the efficiency of fish biomass estimation. Nonetheless, as the demands of 

intensive aquaculture continue to escalate, there arises a compelling need to enhance not only the accuracy 

but also the intelligence level of these methodologies. In this context, fostering close collaboration between 

fisheries experts and engineers emerges as a fundamental approach to refining the accuracy and intelligence 

level of fish biomass estimation methods, as delineated by the aforementioned technologies (Alver et al., 2005; 

Harvey et L., 2001; Li et al., 2019 ; Davison et al., 2015 ; Hicks et al., 2015; Marks and Klomp, 2003). 

 Fish biomass, a fundamental metric in aquatic industries and fisheries management, represents the 

total weight of fish within a given water area. It serves as a crucial indicator for assessing the health and 

productivity of aquatic ecosystems, informing aquaculture practices, and guiding fisheries management 

decisions. The estimation of fish biomass relies on quantitative methods that integrate population counts with 

average weight measurements, offering valuable insights into fish populations' size, structure, and dynamics 

(Johnston et al., 2023; Mihneva et al., 2023; Debroy and Seban, 2022; Cowx, 1983; Doi et al., 2015). 

 Fish biomass estimation is a critical component of current aquaculture methods, covering the rigorous 

measurement of counting, weight, and length from the time of fry introduction until the final sale of fish. Fish 

biomass is a reliable metric that provides valuable information about both fish and the environment. However, 

calculating biomass in highly populated and protected aquatic habitats is an unavoidable and daunting 

challenge in modern aquaculture undertakings (Abinaya et al., 2022; Bjerkeng et al., 1991; Proud et al., 2019; 

Lee et al, 2012; Shepard et al., 2015; Emmrich et al., 2012; Ríha et al., 2023; Zhang and Megrey, 2010). 

 Fish biomass measurement serves as a cornerstone for evaluating recruitment rates and discerning 

the impacts of both fisheries management practices and environmental variables on marine systems. The 

dynamic nature of biomass is evident through its temporal variability, which can undergo substantial 

fluctuations over relatively short periods. Notably, analyses conducted by Assessment Working Groups 

(AWGs) under the purview of the International Council for the Exploration of the Sea (ICES) reveal significant 

shifts in the biomass of key species. Over the past two decades, the biomass of herring has exhibited a 

variation factor of 1.4, while for sprat and cod, this factor stands at 4.4, underscoring the dynamic nature of 

fish stocks. Nevertheless, when considering the broader context of long-term ecosystem dynamics, a mere 

20-year interval appears minuscule. Climatic trends, pivotal in shaping marine environments, operate across 

temporal scales spanning centuries. Thus, to unravel the underlying causes of fluctuations in fish stocks, 

biomass estimates encompassing more extensive temporal frameworks are imperative. In this regard, 

extending the analysis horizon beyond short-term fluctuations becomes essential for elucidating the intricate 

interplay between environmental factors and the sustainability of marine ecosystems (Thurow, 1997; Wilson 

et al., 2018; Chen and Andrew, 1998; Ault et al., 2018; St. John et al., 1990; Block et al., 2019; Yin et al., 2022; 

Lopez et al., 2016; Yulianto et al., 2015; Bianchi et al., 2021; Hossain et al., 2018; Lian et al., 2018). 

 Understanding the distribution patterns of species stands as a fundamental aspect in unraveling their 

ecological dynamics and assessing the risks of extinction, thereby informing conservation efforts aimed at 

safeguarding populations. However, obtaining precise estimates of species distribution poses a significant 

challenge, particularly in environments characterized by intricate microhabitat topography and dense 

vegetation, as commonly encountered in aquatic systems. In recent years, the emergence of environmental 

DNA (eDNA) analysis has revolutionized the documentation of aquatic vertebrate species distributions. By 

detecting minute, species-specific DNA fragments suspended in the water column, eDNA offers a promising 

avenue to enhance the accuracy and cost-effectiveness of distribution surveys while facilitating the detection 
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of rare or invasive species. Noteworthy examples include the utilization of eDNA techniques to confirm the 

presence of bullfrog tadpoles, silver and bighead carp, as well as various frog and salamander species across 

diverse aquatic habitats. The application of eDNA methodologies not only broadens our understanding of 

species distributions but also presents a powerful tool for informing conservation strategies and ecosystem 

management practices in aquatic environments (Takahara et al., 2012; Wanghe et al., 2024; Kindong et al., 

2020; Murakami et al., 2020; Radinger et al, 2023; Doi et al., 2017; Kim et al., 2018). 

 Fish biomass estimation without human involvement presents considerable issues since they are 

sensitive and move freely in an environment with challenging control over sight, lighting, and stability. The 

paper analyzes technological solutions for biomass estimation according to the concept of Aquaculture 4.0. 

 
MATERIALS AND METHODS 

  In prevailing biomass estimation methodologies, routine sampling is conducted to determine the 

average weight of fish inhabiting ponds, while the quantity of extant fish is typically ascertained through a 

comparative analysis between the initial population count and the number of deceased fish. Hence, the 

estimation of fish biomass involves the multiplication of the average weight by this quantity. Nevertheless, 

manual sampling methodologies pose risks of physical harm or significant stress to fish, thereby impacting 

their well-being and developmental trajectory. Moreover, manual sampling processes typically entail 

substantial time investments and are associated with a labor error margin ranging between 15-25%, thereby 

presenting challenges in accurately gauging fish weight via noninvasive means. Additionally, while the 

enumeration of individuals under ordinary circumstances is feasible, quantification becomes problematic in 

scenarios of extensive mortality, theft, or predation incidents. The translation of recorded daily feed intake into 

fish biomass through the feed conversion ratio (FCR) may lack sufficient precision. Consequently, there is an 

imperative to adopt noninvasive, expeditious, and cost-effective approaches for fish biomass estimation to 

address the intensive demands prevalent in aquaculture operations (Li et al, 2019; Mahon, 1990). 
 

  
Fig. 1 - Stages of vision-based biomass estimation (Li et al, 2019) 

 

 Fish mass estimation holds paramount significance for farmers as it furnishes crucial fish biomass 

information essential for optimizing daily feeding practices, controlling stocking densities, and determining the 

optimal harvest time. However, the mass of fish tail fins contributes negligibly to the total body mass. Moreover, 

the tail fins of free-swimming fish commonly exhibit deformities or bending, thereby introducing measurement 

errors and consequently impairing the accuracy of mass predictions by computer vision systems. To address 

this challenge, a novel non-supervised method for fish tail fin removal has been proposed to enhance the 

development of mass prediction models based on ventral geometrical features sans the tail fin. Initially, the 

automated removal of fish tail fins was achieved through the utilization of the Cartesian coordinate system 

coupled with image processing techniques. Subsequently, distinct features were extracted from fish images 

both with and without the tail fin. Finally, the correlational relationship between fish mass and the extracted 
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features was evaluated using Partial Least Square (PLS) analysis. In this study, tail fins were systematically 

eliminated, and the mass estimation model based on area and area square exhibited superior performance on 

the test dataset, yielding a high coefficient of determination (R2) of 0.991, a root mean square error (RMSE) of 

7.10 g, a mean absolute error (MAE) of 5.36 g, and a maximum relative error (MaxRE) of 8.46% (Hao et al., 

2022). 

 Length serves as a fundamental metric in the realm of aquaculture engineering, providing crucial 

insights into fish growth and facilitating effective monitoring protocols. In the intricate process of fish breeding, 

the segregation of fish based on size is imperative to optimize growth conditions and ensure favorable 

developmental trajectories. Furthermore, as fish reach maturity, size-based grading becomes essential to align 

with market demands and enhance economic value. The size of fish within breeding ponds not only serves as 

a barometer for growth monitoring but also aids in predicting factors such as sex and age, pivotal for 

management practices. Fish quality, intrinsically linked to size, underscores the significance of accurate length 

measurements in assessing overall product value. Traditional manual measurement techniques, however, 

pose inherent challenges, including the risk of fish injury or mortality and susceptibility to subjective biases. 

Addressing these limitations, machine vision systems emerge as a transformative solution, offering rapid, 

precise, non-invasive, and cost-effective approaches to fish length determination. In aquatic environments, 

where fish are in constant motion, acquiring accurate size measurements without physical contact presents 

unique challenges. Machine vision systems surmount these obstacles, providing a viable means to capture 

fish length data in real-time, thus revolutionizing size assessment methodologies in aquaculture settings. By 

harnessing advanced technology, the integration of machine vision systems heralds a new era of efficiency 

and accuracy in fish length measurement, facilitating informed decision-making and optimizing aquaculture 

practices (Bravata et al., 2020; Dutta et al., 2016; Sture et al., 2016; Zhou et al, 2023). 
 

 
Fig. 2 - Experimental stand scheme (Zhou et al, 2023) 

 

 Utilizing binocular cameras equipped to capture both RGB and depth images, the acquisition of     

RGB-D data from fish specimens was facilitated, laying the groundwork for comprehensive analysis. 

Subsequently, the RGB images undergo selective segmentation employing the contrast-adaptive Grab Cut 

algorithm, thereby delineating distinct features and enhancing accuracy in subsequent processing stages. To 

discern the structural state of the fish, a skeleton extraction algorithm was deployed, designed to accommodate 

specimens with intricate, curved anatomies. Addressing inherent challenges associated with underwater 

imaging, the study meticulously analyzed and corrected errors stemming from water refraction, ensuring fidelity 

in measurement outcomes. Leveraging the RGB image data, optimal measurement points were identified and 

converted into precise 3D spatial coordinates, thereby facilitating accurate determination of fish length. The 

experimental results showed that the mean relative percentage error for fish length measurement was 0.9% 

(Zhou et al, 2023). 

 Employing advanced computer vision image processing techniques, an optimal model was developed 

to accurately evaluate the body weight of Asian sea bass, both with and without fins. Over the course of one 

month, image data of 25 randomly selected fish were systematically collected on a weekly basis. 

Subsequently, the collected data underwent a meticulous partitioning process, wherein a 40-60% split-test was 

employed. Specifically, 40% of the data, comprising 10 fish (100 images), served as training data, while the 

remaining 60% (15 fish; 150 images) constituted the out-samples or validation dataset. To initiate the 

experimental phase, a total of one hundred Asian sea bass, averaging 30 g in weight, were procured from a 

private fish farm and housed in two 1,000-L fiberglass tanks, accommodating 50 fish per tank. The fish were 
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subjected to a carefully regulated feeding regimen, receiving floating pellet feed with a minimum protein content 

of 35% twice daily (at 0800 h and 1700 h) until satiation. A flow-through water system was employed to 

maintain optimal environmental conditions within the tanks, ensuring the well-being of the fish. Each tank was 

equipped with three air stones to facilitate adequate oxygenation, while water quality parameters including 

dissolved oxygen (DO), water temperature, pH, total ammonia-nitrogen (TAN), and nitrite-nitrogen (NO2-N) 

were monitored and maintained within recommended ranges. Specifically, dissolved oxygen levels, water 

temperature, pH, total ammonia-nitrogen, and nitrite-nitrogen were maintained above 4 mg/L, within the range 

of 26 - 32 degrees Celsius, within 7.5 - 8.5, less than 1 mg/L, and less than 1 mg/L, respectively. To ensure 

the acclimation of the fish to their new environment, feeding and monitoring protocols were rigorously 

implemented until the average fish weight reached the desired range of 80 to 100 g, signifying readiness for 

subsequent experimental procedures (Jongjaraunsuk and Taparhudee, 2021). 
 

 
Fig. 3 - Experimental fish image (Jongjaraunsuk and Taparhudee, 2021) 

A - with fins; B - without fins 

 

 The comparative analysis of results derived from the whole-body images and those excluding fins was 

conducted utilizing various statistical metrics. Specifically, the average coefficient of determination obtained 

from the validation dataset, comprised of 15 fish (150 images) per test (N150R2), and the coefficient of 

determination derived from the comprehensive validation dataset, consisting of 60 fish (600 images) from all 

tests (N600R2), were scrutinized using mathematical models such as RMSE (Root Mean Square Error), MAE 

(Mean Absolute Error), MARE (Mean Absolute Relative Error), MXAE (Maximum Absolute Error), and MXRE 

(Maximum Relative Error). To evaluate the significance of the mean difference between the datasets, an 

independent sample T-test was performed at a 95% confidence level. Statistical analysis was executed using 

the IBM SPSS Statistics Base 24.0 software suite for Windows, facilitating robust and comprehensive 

examination of the data (Jongjaraunsuk and Taparhudee, 2021). 

 Previous research has underscored the efficacy of linear mathematical models in predicting fish weight 

with greater accuracy and fewer errors compared to power or polynomial models. This finding has been 

demonstrated across various species including grey mullet (Mugill cephalus), St. Peter’s fish (Sarotherodon 

galilaeus), common carp (Cyprinus carpio), and jade perch (Scortum barcoo). However, for large fish with an 

average size exceeding 1,000 g under aquaculture conditions, exploring alternative mathematical models may 

be warranted. For instance, in the case of sea bass ranging from 250 to 2.800 g, the utilization of a power 

model has been proposed in previous studies (Konovalov et al., 2018; Viazzi et al., 2015; Zion 2012). 
 

 
Fig. 4 - Correlation of measured fish weight (g) and manually segmented fish body image area (cm2) 

(Konovalov et al., 2018) 
 

Nevertheless, when comparing image formats encompassing fish with and without fins, linear modeling has 

been deemed sufficient in capturing the variability in fish weight accurately. 
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 Acoustic systems, such as echo sonars or multibeam sonars, offer distinct advantages over optical 

methods in underwater environments. Unlike optical systems, which rely on reflected light and are subject to 

limitations in light level and visibility, acoustic systems produce images based on reflected sound. The 

emergence of high-frequency multibeam sonars, often referred to as "acoustic cameras," represents a 

relatively recent technological innovation initially employed for structural surveillance and inspection in marine 

environments. In a study conducted off the coast of French Guiana, a BlueView P900-130 acoustic camera 

was deployed in rocky marine habitats to assess the total abundance, size structure, and spatial distribution 

of a demersal fish population. The study evaluated the relevance of utilizing an acoustic camera for achieving 

these objectives by comparing acoustic data with those obtained from traditional fishing surveys (Artero et al., 

2021; Braga et al., 2022; Graham et al., 2004; Kim et al., 2005). 

 

 
Fig. 5 - Scheme for fish measurement error using an acoustic camera (Artero et al., 2021) 

 

 Acoustic and computer vision techniques converge to pioneer an automated process for estimating 

the biomass of tuna during transfers. This innovative approach integrates a side scan sonar operating at 200 

kHz and a stereo camera strategically positioned to capture the ventral perspective of the fish. These 

instruments serve as the primary acquisition equipment, meticulously designed to gather comprehensive data 

during transfer operations. A floating structure has been ingeniously devised to house the sensors between 

cages during transfers, effectively creating a transfer canal. This configuration facilitates seamless data 

acquisition as the fish migrate from the donor to the receiving cage, ensuring uninterrupted monitoring of 

biomass dynamics. 

  
a b 

Fig. 6 - Side scan sonar for biomass estimation of tuna during transfers, (Puig-Pons et al., 2019) 
a – 200 kHz side scan sonar and stereo camera; b – Design of the proposed and tested floating structures. 

 

The process of biomass assessment unfolds through a systematic methodology that involves both counting 

the transferred tuna and analyzing a representative sample of the stock (Puig-Pons et al., 2019). 

 In aquaculture, vision technology based on underwater robots is used for biomass estimation, solving 

the problem of low efficiency of traditional manual contact measurement, avoiding health issues in fish, and 

greatly improving work efficiency. However, the underwater environment has low visibility and many 

disturbances, and fish images collected based on light vision require further processing. The clarity and 

enhancement of underwater images based on artificial intelligence algorithms remain the focus of research. 

Additionally, problems such as fish body overlap, low resolution, and blurred outlines of small target fish still 

pose difficulties in current research. 
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 The design and implementation of a novel Remotely Operated Vehicle (ROV) tailored for aquaculture 

inspection within marine environments represent a pivotal advancement aimed at furnishing essential insights 

into fishery nets. This ROV constitutes an integral component of the pioneering "Sea Farm" initiative. In 

instances where the ROV encounters operational issues, it is intended to be transported by a floating platform. 

Equipped with a winch, the platform facilitates the descent of the ROV into the seawater and its subsequent 

retrieval post-operation. The structural design incorporates three wings, each housing a dedicated thruster for 

propulsion. Through the coordinated efforts of these thrusters, the ROV boasts omnidirectional 

maneuverability, enabling efficient navigation within its marine environment (Osen et al., 2017). 

 

 
 

a b 

Fig. 7 - Remotely Operated Vehicle for aquaculture, (Osen et al., 2017) 
a – ROV prototype; b – Thruster forces. 

 

 Understanding the abundance and size distribution of fish within semi-intensive rearing systems in 

traditional ponds is crucial for effective sales lot planning and management. Typically, this information is 

acquired through sampling, which necessitates direct catch methods that are both stressful for the fish and 

time-consuming to manage. To achieve this objective, a portable-fixed multibeam imaging sonar employing 

commercial technology was employed, focused on estimating the abundance of gilthead seabream (Sparus 

aurata) within a fish farm's ponds through sonar image analysis (Gutiérrez-Estrada et al., 2022). 

 

 
Fig. 8 - Sonar image treatment with the software LabelImg, (Gutiérrez-Estrada et al., 2022) 

 

 Imaging sonars (ISs) represent high-frequency acoustic devices that are experiencing growing utilization 

in the examination of fish populations across marine and freshwater environments. While acoustic devices offer 

valuable insights, they possess limitations in accurately quantifying species richness. Previous endeavors aimed 

at identifying fish species utilizing IS technology have predominantly concentrated on assemblages characterized 

by either low species richness or high morphological diversity (Sible y et al., 2023). 

 A fully automated IoT-based submersible Remotely Operated Vehicle (ROV) was designed to notify users 

of any detected fish diseases, enhancing overall management and health monitoring capabilities. The ROV 
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operation is facilitated through IoT integration and controller functionality, enabling surveillance both underwater 

and outside water, equipped with a plethora of features. Fish size measurement utilizing underwater cameras 

involves several steps. Initially, the camera captures the motion of the fish, enabling the determination of its 

distance from the camera. Subsequently, the system computes the "pixels per metric" ratio, which serves as a 

reference for size estimation: 
 

𝑃𝑖𝑥𝑒𝑙𝑠 𝑃𝑒𝑟 𝑀𝑒𝑡𝑟𝑖𝑐 =
𝐹𝑖𝑠ℎ_𝑤𝑖𝑑𝑡ℎ

𝐾𝑛𝑜𝑤𝑛_𝑂𝑏𝑗𝑒𝑐𝑡_𝑤𝑖𝑑𝑡ℎ
     (1) 

 

To accurately determine the size of the fish from the image, calibration is essential using a known reference object. 

This reference object allows for the establishment of a relationship between the number of pixels in the image and 

the corresponding physical distance in metric units (Rohit et al., 2019). 
 

 

 

a b 

Fig. 9 - Underwater camera principle of a fully automated IoT-based ROV system, ( Rohit et al., 2019) 
a – Fish tracking and counting architecture; b – Fish Size Measurement. 

 

 Common methods of ocean remote sensing and seafloor surveying primarily involve the utilization of 

airborne and spaceborne hyperspectral imagers. However, the presence of the water column impedes the 

penetration of sunlight to deeper regions, thus constraining the range of observation. As an emerging technology, 

underwater hyperspectral imaging (UHI) serves as an extension of hyperspectral imaging technology adapted for 

air conditions, and is currently experiencing rapid advancement for applications in both shallow and deep-sea 

environments. 

 

 
Fig. 10 - A schematic representation of underwater hyperspectral imaging (UHI) for mapping, (Liu et al., 2020) 

 

 UHI holds significant promise for utilization in marine fisheries and aquaculture, particularly in shallow and 

coastal regions. Its capabilities make it well-suited for monitoring changes in food availability, waste accumulation, 

and seabed composition within these environments (Liu et al., 2020). 

 RGB cameras mounted on an underwater vehicle possess the capability to capture imagery with 

exceptionally high spatial resolution, a fundamental requirement for ensuring precise estimation of biomass 

(Overrein, 2023). 

 Echo sounders enable the real-time monitoring of the complete fish population over extended periods. 

Nonetheless, prevailing methodologies for the automatic interpretation of echograms predominantly concentrate 
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on species classification, thereby inadequately encapsulating the spatiotemporal characteristics inherent in the 

data (Måløy, 2020). 

 Autonomous underwater vehicles (AUVs) represent unmanned submersibles programmable to navigate 

in three dimensions beneath the water's surface. The technological evolution necessary for their dependable 

deployment, mission control, performance optimization, and retrieval has undergone significant advancement over 

the past decade. Presently, numerous AUVs operate effectively within offshore industries and across applied and 

academic oceanographic disciplines. AUVs boast compact dimensions, emit minimal noise, and offer cost-

effective operation, unaffected by weather conditions. 
 

 
Fig. 11 - View of Autosub-2 with the payload configured for acoustic surveys of aquatic fauna - SIMRAD EK500, 

scientific, multi-frequency vertical echosounder (Fernandes et al., 2003) 

 

Case studies demonstrate how these attributes benefit fisheries-acoustics science, drawing from past research 

conducted in regions like the North Sea and Southern Ocean while projecting potential future applications 

(Fernandes et al., 2003). 

 The SeaBED AUV is ingeniously engineered for a multifaceted exploration, encompassing photographic 

transects, side scan sonar, and bathymetric surveys. Its structure comprises two torpedo-like components 

connected by vertical struts, creating a cohesive unit for underwater operations. Despite its compact design, the 

AUV boasts notable dimensions: measuring 1.5 meters in length, 2.0 meters in height, and weighing approximately 

250 kilograms, although the weight may fluctuate slightly depending on the payload it carries (Tolimieri et al., 2008). 

 

 
Fig. 12 - SeaBED autonomous underwater vehicle scheme, (Tolimieri et al., 2008) 

 

Within the realm of marine research, the SeaBED AUV emerges as a pivotal tool, particularly in estimating the 

biomass of fish populations. 

 The aim of this paper is to provide a comprehensive overview of the evolution of various techniques 

utilized for mass measurement, enumeration, or direct estimation of fish biomass. This review serves as a 

valuable resource for researchers seeking to comprehend the current landscape of approaches to biomass 

estimation, providing actionable insights for enhancing the precision and efficiency of intensive fish farming 

practices. 
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RESULTS 

 Table 1 shows the biomass estimation technologies according to the type of underwater robots. 
 

Table 1 

The biomass estimation technologies according to the type of underwater robots 

Type of Underwater Robot Biomass Estimation Technology Reference 

ROV (Remotely Operated Vehicle) 

Acoustic Imaging (sonar) 

Osen et al., 2017 

Gutiérrez-Estrada et al., 2022 

Sibley et al., 2023 

Christ and Wernli, 2014 

Rundtop and Frank, 2016 

Måløy, 2020 

Optical Imaging (video cameras) 

Macreadie et al., 2018 

Rohit et al., 2019 

Zhang et al., 2024 

Multispectral Imaging 
Liu et al., 2020 

Overrein, 2023 

AUV (Autonomous Underwater Vehicle) 
Side scan Sonar Fernandes et al., 2003 

Section Scanning Sonar Tolimieri et al., 2008 

 

Below are presented some mathematical models that contribute to the repertoire of mathematical 
approaches used in biomass estimation, reflecting the various methodologies used in ecological research and 
natural resource management. 

 

1. Logistic Growth Model (Verhulst, 1838): 
 

𝑁(𝑡) =
𝐾

1+
𝐾−𝑁0

𝑁0
𝑒−𝑟𝑡

      (2) 

 

 This model describes the growth of a population in a limited environment, where N(t) represents 
biomass at time t, N0 is the initial biomass, K is the carrying capacity, r is the growth rate, and e is the base of 
the natural logarithm. 
 

2. Schaefer Fish Stock Assessment Model (Schaefer, 1954): 

𝐹(𝐵) = 𝑟𝐵(1 −
𝐵

𝐾
)      (3) 

 

 This model uses a differential equation to estimate fish biomass (B) based on fishing rate (F), natural 

growth rate (r), and carrying capacity (K). 
 

3. Fox Model (Fox, 1970, Musick and Bonfil, 2005): 

𝐵𝑡+1 = 𝐵𝑡 + 𝑟𝐵𝑡 (1 −
𝑙𝑛𝐵𝑡

𝑙𝑛𝐾
) − 𝐶𝑡     (4) 

 

 The Fox surplus production model is used to estimate the surplus production of a fish stock, which 
represents the additional biomass that can be sustainably harvested beyond what is required to maintain the 
stock at its current level, where B represents biomass, K represents carrying capacity, r represents intrinsic 

rate of population increase and C is catch. 
 

4. Pella and Tomlinson Model (Pella and Tomlinson, 1969): 
 

𝑑𝐵

𝑑𝑡
= 𝑟𝐵(1 −

𝐵

𝐾
) − 𝐹(𝐵)      (5) 

 The Pella-Tomlinson model is based on the assumption of a logistic growth function for fish 
populations. The model estimates the total biomass B of the fish stock at a given time, taking into account the 

current biomass, the intrinsic rate of growth r, and the carrying capacity K of the environment. 

  
𝑑𝐵

𝑑𝑡
 represents the rate of change of biomass over time. 

 𝐹(𝐵) represents the fishing mortality rate, which is a function of the current biomass B. 
 

5. Multispecies Trophic Network Model (May, 2019): 
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𝑑𝑁𝑖

𝑑𝑡
= 𝑟𝑖𝑁𝑖(1 − ∑ 𝑐𝑖𝑗

𝑁𝑗

𝐾𝑗

𝑛
𝑗=1      (6) 

 

 This model describes the population dynamics of species i in a trophic network, considering 

interactions with other species j, growth rates (ri), carrying capacities (Kj), and consumption coefficients (cij). 
6. Stochastic Differential Equations (SDE) Biomass Model (Gard, 1989): 

 

𝑑𝑋𝑡 = (𝜇 −
𝜎2

2
) 𝑑𝑡 + 𝜎𝑑𝑊𝑡     (7) 

 

 This model uses stochastic differential equations to describe biomass variations over time, where Xt 
represents biomass at time t, µ is the average growth rate, σ is the standard deviation of the stochastic process, 

and dWt is a Brownian variation. 
 

7. von Bertalanffy Growth Model for weight (Von Bertalanffy, 1957): 
 

𝑊(𝑡) = 𝑊∞(1 − 𝑒−𝑘(𝑡−𝑡0)3     (8) 
 

 This model describes the sigmoidal growth pattern observed in many fish species, where growth is 
rapid early in life, slows down as the fish approaches its maximum size, and eventually levels off, where W(t) 
represents the weight of the fish at age t; W∞ is the theoretical maximum asymptotic weight that the fish can 

reach; k is the von Bertalanffy growth coefficient, which represents the rate at which the fish approaches its 

maximum weight; t0 is the theoretical age at which the weight of the fish would be zero and e is the base of the 
natural logarithm. The von Bertalanffy Growth Model is widely used in fisheries science and management to 
estimate growth parameters for fish populations, assess population dynamics, and inform fisheries 
management strategies. 
 

8. Biomass Dynamic Models (Colvin et al., 2012): 
 Biomass Dynamic Models (BDMs) utilize a variety of equations and mathematical formulations to 
describe the dynamics of fish populations within ecosystems. While the specific equations used can vary 
depending on the model and its purpose, here are some general components and equations commonly found 
in Biomass Dynamic Models: 
 

a. Population Growth Equation: 
 The population growth equation describes how the biomass of a fish population changes over time. It 
often includes terms for population growth, mortality, recruitment, and other factors affecting population 
dynamics. A basic form of the population growth equation may be represented as: 
 

𝑑𝑁

𝑑𝑡
= 𝑓(𝑁, 𝑡) − 𝑀(𝑁, 𝑡)      (9) 

 

where: N represents the population biomass, t represents time, f(N,t) represents the rate of population growth, 

M(N,t) represents the rate of mortality. 
 

b. Recruitment Equation: 
 The recruitment equation describes the addition of new individuals to the population. It often includes 
terms for spawning stock biomass, environmental conditions, and other factors influencing recruitment. A basic 
form of the recruitment equation may be represented as: 
 

𝑅(𝑡) = 𝑓(𝑆(𝑡), 𝐸(𝑡))      (10) 
 

where: R(t) represents recruitment at time t, S(t) represents spawning stock biomass at time t, E(t) represents 

environmental conditions at time t. 
 

c. Growth Equation: 
 

The growth equation describes how individual fish grow over time. It often includes terms for growth 
rate, food availability, and other environmental factors. A basic form of the growth equation may be represented 
as: 

 
𝑑𝑊

𝑑𝑡
= 𝐺(𝑊, 𝑡)       (11) 

where: W represents individual fish weight, G(W,t) represents the rate growth. 
 

d. Fishing Mortality Equation: 
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The fishing mortality equation describes the impact of fishing on the fish population. It often includes 
terms for fishing effort, fishing mortality rates, and selectivity of fishing gear. A basic form of the fishing mortality 
equation may be represented as: 

 

𝐹(𝑡) = 𝐸( 𝑡) ∙ 𝑆(𝑡) ∙
𝐹𝑚𝑎𝑥

𝐸𝑚𝑎𝑥
     (12) 

 

where: F(t) represents fishing mortality at time t, E(t) represents fishing effort at time t, S(t) represents 

selectivity of fishing gear at time t, Fmax represents maximum fishing mortality rate, Emax represents maximum 
fishing effort. 
  These models represent a diverse set of mathematical approaches used for biomass estimation, 
incorporating advanced technologies and modern data analysis methods to provide accurate and relevant 
estimates in various ecological and scientific contexts. 
 
 

 

CONCLUSIONS 

  By analyzing the technological solutions for biomass estimation according to the concept of 

Aquaculture 4.0, it can be concluded that: 

➢ the estimation of fish biomass through the integration of optical and acoustic cameras 

represents a significant advancement in real-time, non-contact, non-destructive, safe, and reliable fish 

population assessment methodologies; 

➢ the utilization of underwater vision for biomass estimation, coupled with the integration of data 

into big data platforms for decision-making processes, presents a promising avenue for enhancing the 

accuracy of bait casting in intelligent aquaculture pract ices; 

➢ it is crucial to acknowledge the challenges posed by underwater environmental conditions, 

including illumination variations and multiple disturbances, which significantly increase the complexity of 

underwater image processing; 

➢ future research efforts should focus on the refinement of image processing algorithms to 

mitigate the impact of underwater environmental disturbances on biomass estimation accuracy ; 

➢ the integration of advanced technologies, such as artificial intelligence and machine learning, 

holds potential for enhancing the robustness and efficiency of underwater image processing techniques ; 

➢ the integration of Machine Vision, acoustics, ambient DNA, and other innovative technologies holds 

immense potential for transforming the way fish biomass is estimated. By adopting non-invasive, rapid and 

cost-effective methodologies, timely and reliable information essential for sustainable fisheries management 

and conservation efforts can be obtained; 

➢ mass prediction methods that exclude fish tail fins could more accurately estimate fish mass 

compared to models that incorporate tail fins. This methodology holds promise for extending mass estimation 

to free-swimming fish underwater in aquaculture settings. 
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