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ABSTRACT 

The aim of the research is to highlight some statistical tools that favour extracting the components of the 

dynamic process that are dependent on the forward speed of some agricultural aggregates. The main 

objectives are: (I) identification of a minimum number of components in a multitude of random variables, with 

the help of which the other random variables can be calculated, and the application of this result to the strain 

gauge measurements; (II) establishing the connection between the synthetic results that partially solve the 

first objective and the forward speed of the agricultural aggregate. The second objective is used to obtain 

indications in search of the parameters’ dependencies on the forward speed of the aggregate. The first 

objective seeks to determine a group of three signals from the twelve, with the help of which the best 

multivariate linear interpolation is obtained for the other nine signals, which in physical terms means the 

reduction to a quarter of the measurement points and of the strain sensors used. A result associated with the 

first objective refers to the estimation of information loss due to the limited number of deformation sensors 

mounted on the tested structure. The article also presents attempts to use the results of the theory of neural 

networks and statistical interaction. In order to capitalise on the experimental data in this complex statistical 

framework, it is necessary to monitor at least the working speed (not only the average speed per 

experiment), fuel consumption, working depth (continuously monitored), soil moisture etc. 

 

REZUMAT 

Scopul cercetării este de a evidenția unele instrumente statistice care favorizează extragerea componentelor 

procesului dinamic care sunt dependente de viteza de avans a unor agregate agricole. Principalele obiective 

sunt: (I) identificarea unui număr minim de componente într-o multitudine de variabile aleatoare, cu ajutorul 

cărora pot fi calculate celelalte variabile aleatoare și aplicarea acestui rezultat la măsurătorile 

extensometrice; (II) stabilirea legăturii dintre rezultatele sintetice care rezolvă parțial primul obiectiv și viteza 

de avans a agregatului agricol.  Al doilea obiectiv este utilizat pentru a obține indicații în căutarea 

dependențelor parametrilor de viteza de avans a agregatului. Primul obiectiv urmărește determinarea unui 

grup de trei semnale din cele douăsprezece, cu ajutorul cărora se obține cea mai bună interpolare liniară 

multivariată pentru celelalte nouă semnale, ceea ce în termeni fizici înseamnă reducerea la un sfert a 

punctelor de măsurare și a senzorilor de deformare utilizați. Un rezultat asociat primului obiectiv se referă la 

estimarea pierderii de informații din cauza numărului limitat de senzori de deformare montați pe structura 

testată. Articolul prezintă, de asemenea, încercări de utilizare a rezultatelor teoriei rețelelor neuronale și a 

interacțiunii statistice. Pentru a valorifica datele experimentale din acest cadru statistic complex, este 

necesar să se monitorizeze cel puțin viteza de lucru (nu doar viteza medie pe experiment), consumul de 

combustibil, adâncimea de lucru (monitorizată continuu), umiditatea  solului etc. 

 

INTRODUCTION 

 The results presented in this article are the last of the series of those presented by Cardei and 

collaborators (Cardei et al., 2023a; Cardei et al., 2023b; Cardei et al., 2023c) regarding the numerical data 

obtained in the field with a complex structure of experimental cultivator MCLS. 
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 The dependence of some parameters of the dynamics of agricultural aggregates on the forward speed 

has been studied for many decades, with various solutions appearing in many publications (Letosnev, 1959; 

Moenifa et al., 2014; Cardei et al., 2019; Cardei et al., 2020; Ranjbar et al., 2013; Naderloo et al., 2009; 

ASAE, 2003 and 2017; McKyes, 1985; Owen 1989; Larson, 1964; Fechete-Tutunaru et al., 2019; Cardei et 

al., 2023b; Shafei et al., 2018; Damanauskas, Janulevicius, 2022; Dizaji, 2022; Karmarkar, Gilke, 2021; 

Askari et al., 2017; Al-Suhaibani, Ghaly, 2010; Elsheika et al., 2021; Deshpande, Shirwal, 2017; Saleh et al., 

2021; Rashidi et al., 2013), for example. In general, the draft force depending on the main parameters that 

define the soil, the geometry of the working bodies, the mass of the machine, the forward speed, the working 

depth, and the working width was studied and modelled. At first, simple models were proposed, for example 

Letosnev (1959), then the models were gradually complicated with geometric components, for example 

(McKyes, 1985; Owen 1989; Al-Neama, Hertzilius, 2017). Later, generalisations appeared relative to the 

components that contain work speed, in ASAE (2003) or Moenifar et al. (2014). In search of more precise 

approximations of the draft force, the research became theoretical-experimental. The experimental data were 

directly transformed into formulas through various interpolation procedures. Since experimental research has 

taken place on a large scale, statistics have been increasingly used for the processing of experimental data, 

as shown in Da Silva et al. (2020) or Gomez and Gomez (1984), referring to modern agriculture. Having as 

an objective the rationalisation of fuel consumption, the authors Mamkagh(2018) and Singh et al. (2018) 

carried out some review of the main influencing factors: forward speed, tractor ballast, and tyre pressure. 

Finally, the authors Sadek et al. (2021) determine, using experimental data, a linear regression equation in 

which the forward speed, gang angle, inclination angle, working depth, and disc diameter appear. The 

authors Ahmed and Al_Sayed (2022) obtained results regarding the influence of forward speed and soil type 

on the performance of the Massey Ferguson tractor (model 290). Analysis of variance, or ANOVA tests, are 

used, for example in Deshpande and Shirwal(2017), to determine the influence of the forward speed and the 

shape of the working bodies on the draft force. Statistical modelling has become a tool often used to make 

predictions of draft force. For this purpose, speed and working depth are used as predictors, as are others 

(Afify et al.,2020; Kim et al., 2020; Rashidi, 2013a and 2013b; Saleh et al., 2021). Artificial neural networks 

have started to be used in the last decades to obtain predictions of the parameters targeted in the field of 

agricultural soil processing (Shafei et al., 2018; Çarman et al., 2021; El Wahed, Aboukarima, 2007; Al-

Dosary et al., 2020; Carman et al., 2019; Askari, Abbaspour-Gilandeh, 2020). Also, nonlinear regression 

formulas for the problem of predicting the draft tillage force are used in Shafei et al. (2018) and Almaliki et al. 

(2019), in the case of a disc plough. The use of neural networks in the case of measuring several 

parameters, including fuel consumption, allowed highlighting the decrease in this consumption with the 

increase in forward speed (Çarman et al., 2019). 

 Proceeding in this way, the generality of the solution is deeply affected due to the dependence on the 

soil and the environmental conditions in which the experiments were made. Not only the generality was 

affected, but also the cost of research. Experimental research, however satisfactory, is expensive and 

beyond the reach of any research team. 

 The research whose results are described in this work also uses experimental data in the statistical 

framework, both descriptive and inferential. Within the descriptive statistics, it was sought to highlight some 

estimators that are well correlated with the forward speed. Inferential statistics were used to investigate the 

possibilities of reducing the number of measurements or measurement points with minimal loss of 

information. For this purpose, linear multivariate analysis techniques were used, which are also used in PCA 

analyses or in neural networks. Due to the small data structure, the statistical analysis of the networks, which 

can provide very important results, could not be applied in these studies (Brinkmeier, Schank, 2005; 

Avrachenkov, Dreveton, 2022). Instead, it was possible to estimate some of the structural data needed for 

modelling, which must be collected in future experiments to effectively use such statistical tools. 

 Regarding the first objective of our research, namely that of studying the relationships between the 

randomvariables that describe each recording within an experiment, modern statistics provides a specific notion 

calledinteraction (statistics), defined in Dodge (2003); Cox (1984); 

https://en.wikipedia.org/wiki/Interaction_(statistics). According to these sources, in statistics, an interaction can 

occur when considering the relationship between three or more variables and describing a situation where 

the effect of one causal variable on an outcome depends on the state of a second causal variable (i.e., when 

the effects of the two causes are not additive). Interactions are often considered in regression analyses or 

factorial experiments. Non-linear relationships with interaction have been proposed since the beginning of 

modelling the phenomenon of soil processing in agriculture (Cardei et al., 2019).  
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 Also, in a research done by Dodge (2003), it was stated that the presence of interactions can have 

important implications for the interpretation of statistical models. If two variables of interest interact, the 

relationship between each of the interacting variables and a third "dependent variable" depends on the value 

of the other interacting variable. In practice, this makes it more difficult to predict the consequences of 

changing the value of a variable, especially if the variables it interacts with are difficult to measure or control. 

 The notion of interaction is closely related to that of moderation, which is common in social and health 

science research. The interaction between an explanatory variable and an environmental variable suggests 

that the effect of the explanatory variable was moderated or modified by the environmental variable (Dodge, 2003). 

This framework of statistical interaction is probably the best description of our research framework for achieving, 

the first goal. The link between the notions of interaction and influence is strong, as the dictionary also shows 

(https://dexonline.ro/definitie/interacțiune;https://dictionary.cambridge.org/dictionary/english/interaction). 

 The efficiency of some modern scientific tools is evaluated in the problem of forecasting traction 

parameters in soil works, such as the neuro-fuzzy strategy (Shafei et al., 2018). The method of optimising 

the combination of channels that, through multivariate analysis, can generate the best linear approximations 

of the other channels considered unmonitored, presented in subchapter 2.3 and whose results are 

summarised in table 3, is part of the working techniques of inferential statistical analysis described in the last 

paragraphs. The method is simple and logical, and it only needs knowledge of the definitions of the notions 

to be worked with. Calculation algorithms can be easily developed without the need for software specialists. 

The calculation volume increases a lot with the number of basic channels (monitored and unmonitored) and 

with the number of experiments. The dependence on the working speed of the optimal predictor channel 

combinations is insignificant, remaining in the field of randomness. 

 

MATERIALS AND METHODS 

 The working material of the research whose results are presented in this article is made up of the 

strain gauge measurement recordings made in experiments carried out in 2022, presented in detail in Cardei 

et al. (2023a and 2023b). 

 The research, the results of which are described in this article, proposed the analysis of experimental 

recordings as sets of parametrized random variables. Concretely, the sets of random variables are the 

experimental records (converted into draft force) grouped into 12 numerical strings each, with different 

lengths between 2000 and 4000 samples (real numbers). Seven such groups of random variables were 

examined and parameterized according to the timed average speed corresponding to each experiment. 

 Our investigations tried to highlight the characterization efficiency of some statistical tools, the 

detection of possible links between the random variables of each group or the non-existence of these links, 

the correlation of some characteristics with the values of the characterization parameters of the groups 

(forwarded speed), or the non-correlation. Therefore, the investigations are open to any conclusions and do 

not follow a fixed orientation, such as, for example, the optimisation of some work regimes. The aim is only to 

obtain information that can be used in the research activities that will be developed. 

  
Fig. 1 - The tractor unit (45 HP)-MCLS, the version with a working width of 1 m (left), and the locations of the 

deformation sensors on the supports of the working bodies of the MCLS (right) 

 

2.1. The average signal  

In this chapter, the average signal of the twelve signals collected from the supports of the working 

bodies of the MCLS, the version with a working width of 1 m, will be defined according to equation (2). 

Definition (1) was considered. 
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 (1) 

 

Where:  is the matrix of numerical recordings converted into forces obtained from the twelve deformation 

sensors (fig. 1, right). An average signal will be defined according to the natural definition given in (2). 

 
(2) 

 

For each moment of time (sample), the average signal represents the arithmetic mean of the values of 

the twelve signals at that moment (sample). 

For the study of the dependence of the force on the traction resistance, a quantity dependent on the 

variation compared to the average of the signals that form the columns of the matrix  namely the matrix of 

standardized signals, is defined: 
 

 (3) 

 

where: 

 
(4) 

 

and: 

 

(5) 

 

are the mean and standard deviation of the signal . To give a measure of the representativeness of the average 

signal, (2), for the signals collected during an experiment, it was used the formula of a given distance as in 

(6). 
 

 

(6) 

 

The coding of the recording channels, according to the notations in Fig. 1 (right), is listed in Table 1. 

 

Table 1 

Coding of signals stored in matrix A 

         

         

         

         
 

In Table 1, by , was symbolised the column of the data matrix , which contains the signal 

. Table 1 contains notations valid for each of the seven experiments, corresponding to six 

different values of the average forward speed (two experiments were carried out with the same speed). The 

experiment codes, corresponding average forward speed, and data file sizes are listed in Table 2. 
 

Table 2 
The codes, the average speeds, and the sizes of the data files corresponding to the experiments 

Experiment code Rows Cols Forward speed, m/s 

T2_R2_1500rpmtxt 4001 13 0.781 

T1_R2_2400rpmtxt 4001 13 0.789 

T1_R3_1500rpmtxt 2501 13 1.095 

T2_R2_2700rpmtxt 1501 13 1.613 

T2_R3_1500rpmtxt 2501 13 1.613 

T3_R2_1500rpmtxt 2201 13 2.158 

T2_R3_2000rpmtxt 1701 13 2.256 
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2.2. The statistical estimators calculated for the evaluation of the link with the forward speed  

To evaluate the link between the draft force and the forward speed of the aggregate, the most 

frequently used descriptive statistical estimators were used: the average value, the median, the variance, the 

standard deviation, the asymmetry coefficient, and the vaulting for all the signals of each experiment and for 

the average experiment of each experiment, both for the original signals (1) and for the standardised signals 

(3). The results are given in Table 3. 

 

2.3. Determination of essential components for signal interpolation  

The estimators whose method of calculation is explained in this chapter are not part of the category of 

descriptive statistics but are elements of inferential statistical analysis. These estimators are developed for 

the purpose of finding the "best channel combinations" (of channel recordings). The optimal meaning of this 

combination of random variables (experimental records) is that, with their help, a linear multivariate 

interpolation formula can be obtained, which produces a matrix of the coefficients of determination with the 

largest sum of elements or produces signals of interpolation with the smallest variation compared to the 

original signals. 

To achieve this goal, several channels are conventionally used. Any number of channels between 1 

and the maximum number of registered channels can be taken. Obviously, the interest is to reproduce as 

much information as possible (see 2.4) with as few physical records as possible. If the interests of the 

experimenter and the operator who processes the data are considered, then the smallest possible number of 

sensors that generate a quantity of information that can be generalised to the entire studied structure would 

be taken into account. In the case of the version with a working width of 1 m of the MCLS (fig. 1), the 

maximum number of recorded channels is 12. For the optimisation analysis of the linear multivariate 

interpolation, the number of three basic channels was taken inspired by the number of channels on a line of 

working body perpendicular to the forward axis of the aggregate. Obviously, one, two, four, or more channels 

could be used. Increasing the number of channels makes the operation more expensive (when processing 

only for calculation but when experimenting with all sensor mounting operations, calibration, and recording, 

in addition to the optimal selections for eliminating transient areas or recording accidents). If fewer basic 

channels are taken, then obviously the precision decreases and the loss of information becomes important 

(see 2.4). 

If three basic channels are taken, the number of possible combinations between the 12 channels is 

220 (for a number  of basic channels,  possible combinations of channels that each 

generate a linear multivariate interpolation must be estimated for  variables). In this case, =3 was taken, 

and for each of the seven experiments, 220 interpolations were made. Then, for each interpolation, the 

coefficient of determination and the variance were selected. There were two objectives. The first was the 

global coefficient of determination (the sum of the coefficients of determination corresponding to the 

interpolation with the combination of channels used, including the basic channels, so the maximum value 

would be 12). The second objective function was the sum of variances achieved with each interpolation over 

all signals in an experiment (global variance). The optimisation consisted of maximising the global coefficient 

of determination objective function and minimising the global variance objective function. The results for each 

experiment are listed in Table 3. 

The calculations presented in subsection 2.3 are related to the notion of statistical interaction, to which 

references were made in the introduction of the article. 

 

2.4. Loss of information due to survey measurement  

In general, in practise, strain sensors are mounted on a small number of measurement points. In this 

way, information loss occurs. In this subchapter, it was intended to give the reader an idea of the size of the 

information loss. 

First, the term "information loss" must be rigorously defined because the calculation depends on the 

definition. For simplicity, an information loss will be defined relative to the arithmetic mean of the random 

variables (the twelve numerical strings collected on the measurement channels, fig. 1, right), because it is 

simpler to calculate. Therefore, the information loss is defined relative to the average value of the random 

variables by formula (7). 

 

(7) 
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In Eq.7,  is the arithmetic mean of the basic channel signals,  is the arithmetic mean of the 

recording on channel . The minimum value is taken after all 220 combinations of three channels out of the 

12 possible. 

Practically, for each of the combinations of channels (random variables) generated by the 

combinations of twelve taken in threes (see 2.3), the arithmetic mean of the three channels is calculated. 

From this, the mean corresponding to each channel is subtracted in absolute value, after which it is summed 

up, averaged over the number of channels, and relativized to the true average (measured in this 

experiment). After this, the combination with the minimum value of information loss from the 220 results is 

taken. The third set of channels realises the minimum loss of information and retains the amount of this loss. 

With these specifications, the combinations and values of the minimum information loss are obtained for 

each of the seven experiments listed in Table 2. These combinations and the corresponding information loss 

values are listed in Table 3. 

Obviously, instead of three basic channels, any number between 1 and the number of channels 

(random variables) contained in the data file can be used. With the increase in the number of basic channels 

considered for the calculation of the average value (or other comparison criteria), the precision increases, but 

the measurements with a larger number of basic channels are more expensive. 

Instead of the average value criterion for choosing a satisfactory base combination of the 

measurement channels, the global option can be chosen for the optimisation criterion, as defined in 2.3. The 

calculation becomes much more complex. Also, the calculation becomes more complex, and when we 

choose a larger number of basic channels, for example, taking the number of combinations for four basic 

channels, 495 combinationsthat must be evaluated are obtained.  

 

RESULTS 

The numerical results obtained using the methods described above are given in this chapter. For a 

better understanding, fig. 2 gives the graphic representation of the signals of a data file recorded in one of 

the seven experiments, namely the one with the code T3_R2_1500rpmtxt, corresponding to the average 

forward speed of the aggregate with a value of 2.158 m/s. In order to make the discrete curves and the 

average curve more easily observable, only 1000 samples were represented from 2201 of the selected 

recording (to eliminate transient passages). In Fig. 3, the same type of graphs is given but for standardised 

signals, according to formulas (3), (4), and (5). 

Graphic representations like those in Figs. 2 and 3 are obtained for each of the seven data files 

recorded in the seven experiments. The channels in the legends of Figs. 2 and 3 correspond to the labels of 

the deformation sensors mounted on the structure according to Fig. 1 (right). Using formulas 2, 3, 4, and 5, it 

is observed that the average value of the standardised signal and the average value of the average 

standardised signal are zero. For this reason, they were not included in Table 3 because their correlation 

with the speed of travel is meaningless. In the same situation are the variance of all the signals and the 

standard deviation for the standardised signals, which give a constant value of 1.1. 

 

 
Fig. 2 - Graphic representation of the recorded signals and the average signal for the experiment,  

working at a forward speed of 2.158 m/s 
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Fig. 3 - Graphic representation of the recorded signals and the average signal for the experiment (detail), 

working at a forward speed of 2.158 m/s 

 

The values of the statistical estimators calculated for each signal and experimental recording and 

their correlations with the forward speed 

The values of the main statistical estimators of the signals, in the original and standardised versions, 

as well as the optimal interpolation performances using as a basis three signals from each experimental data 

file, are listed in Table 3. 

Table 3 

Descriptive statistics estimators of the data recorded in the experiments carried out with the 1 m working width 
variant of MCLS and estimators of the optimal channels for generating the other recordings 

Experiment code 
T2_R2_ 

1500rpmtxt 
T1_R2_ 

2400rpmtxt 
T1_R3_ 

1500rpmtxt 
T2_R2_ 

2700rpmtxt 
T2_R3_ 

1500rpmtxt 
T3_R2_ 

1500rpmtxt 
T2_R3_ 

2000rpmtxt 
Correlation 
with speed 

Speed, m/s 0.781 0.789 1.095 1.613 1.613 2.158 2.256 1 

Minimum value, N 16.342 23.03 30.952 -51.566 28.041 -130.612 -65.466 -0.805 

Maximum value, 
N 

1110.303 1086.078 1432.804 1345.208 1250.377 1343.686 1468.57 0.715 

Mean value, N 478.413 518.448 491.532 508.53 495.54 448.719 452.695 -0.6842359 

Mean value of the 
mean signal, N 

478.413 518.448 491.532 508.53 495.54 448.719 452.695 -0.6842359 

Median, N 474.97 517.684 480.54 494.14 474.473 423.896 441.37 -0.7870628 

Median of the 
mean signal, N 

484.086 520.204 495.332 502.667 492.819 453.272 461.094 -0.7554842 

Variance of all 
signals 

30764.988 24291.887 27717.492 38210.409 31887.955 49279.026 46055.503 0.9188198 

Average signal 
variance 

5318.869 4600.255 6822.551 9501.582 5120.232 13059.114 12081.83 0.8738812 

Standard 
deviation ( ) 

175.4 155.859 166.486 195.475 178.572 221.989 214.605 0.9197003 

Standard 
deviation ( ) 

72.931 67.825 82.599 97.476 71.556 114.276 109.917 0.8679225 

Skew ( ) 0.126 0.127 0.39 0.405 0.503 0.572 0.399 0.8141647 

Skew ( ) -0.699 -0.192 -0.127 0.112 0.26 -0.334 -0.146 0.329507 

Kurt ( ) -0.223 -0.187 0.377 0.364 -0.026 0.166 0.222 0.5266001 

Kurt ( ) 0.864 -0.03 -0.015 -0.417 0.255 -0.069 -0.338 -0.5818835 

Median*, N -0.017 -0.004 -0.053 -0.11 -0.069 -0.079 -0.068 -0.7393499 

Medium signal 
median*, N 

0.036 0.019 0.029 -0.028 -0.017 0.017 0.043 -0.1001057 

Medium signal 
variance* 0.252 0.253 0.297 0.309 0.299 0.314 0.321 0.9077523 

Standard 
deviation ( )* 0.502 0.503 0.545 0.556 0.547 0.56 0.567 0.9031289 

Skew ( )* 0.091 0.076 0.353 0.46 0.46 0.481 0.43 0.8496965 

Skew ( )* -0.7 -0.201 -0.08 0.082 0.243 -0.295 -0.165 0.3347382 

Kurt ( )* 0.022 -0.198 0.467 0.291 0.529 0.147 0.239 0.3787685 

Kurt ( )* 0.959 -0.056 0.007 -0.391 0.282 -0.14 -0.298 -0.5859633 
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Experiment code 
T2_R2_ 

1500rpmtxt 
T1_R2_ 

2400rpmtxt 
T1_R3_ 

1500rpmtxt 
T2_R2_ 

2700rpmtxt 
T2_R3_ 

1500rpmtxt 
T3_R2_ 

1500rpmtxt 
T2_R3_ 

2000rpmtxt 
Correlation 
with speed 

Maximum 
component of the 
correlation Matrix 
of the original 
signals 

0.645 0.645 0.585 0.749 0.653 0.586 0.628 -0.0767691 

Maximum 
component of the 
correlation of the 
original signals 
with the average 
signal 

0.7 0.683 0.709 0.754 0.636 0.658 0.733 0.0258697 

Minimum 
component of the 
correlation matrix 
of the original 
signals 

-0.207 -0.157 -0.042 -0.115 -0.11 -0.105 -0.319 -0.267858 

Minimum value of 
the correlation of 
the original 
signals with the 
average signal 

0.289 0.354 0.389 0.272 0.357 0.429 0.395 0.501923 

Sum of the 
distances 
between the 
signals and the 
average signal 

20.534 16.801 14.57 12.7 15.786 19.55 16.545 -0.0783404 

Optimal 
combination of 
channels for 
maximum  

ch2 ch3 
ch19 

ch3 ch22 
ch23 

ch1 ch3 
ch18 

ch19 ch20 
ch22 

ch2 ch21 
ch24 

ch3 ch18 
ch19 

ch1 ch4 
ch22 

- 

Maximum total R 0.4072 0.4041 0.4408 0.5526 0.4658 0.4714 0.4919 0.6835293 

Optimal 
combination of 
channels for 
minimum variance 

ch18 ch20 
ch22 

ch3 ch22 
ch23 

ch1 ch3 
ch18 

ch19 ch21 
ch24 

ch2 ch21 
ch24 

ch3 ch18 
ch19 

ch1 ch4 
ch22 

- 

Minimum total 
variance 

4.536 42.13 32.35 22.32 31.57 29.49 25.39 0.0849382 

Combination of 
channels that 
gives the 
minimum 
information loss 

ch4 ch18 
ch23 

ch2 ch19 
ch22 

ch19 ch20 
ch211 

ch4 ch18 
ch21 

ch4 ch19 
ch20 

ch1 ch3 
ch23 

ch4 ch20 
ch22 

- 

 minimum, % 19.35 12.163 11.454 15.229 18.997 14.021 15.354 0.042 

SMD minimum, % 6.061 13.636 9.091 6.061 7.576 9.091 7.576 -0.299 

*For standardised signals. 

Also, Table 3 lists the combinations of channels that achieve the minimum information loss relative to 

the average of the random variables and the value of this loss in percentages. The value of the Pearson 

correlation coefficient corresponding to the series of information losses and average forward speeds for the 

seven analysed experiments is also given. 

The main observations from Table 3 are: 

- the most intensively correlated statistical estimators with the forward speed of the aggregate are: 

standard deviation and variance (slightly higher for the original signals than for the average signal); 

- an intense descriptive statistical estimator related to the forward speed is, according to the results in 

Table 2, asymmetry (skew); 

- remarkable for future tests are the inverse correlations with the forward speed of the averages and 

medians of the original signals and the average signal; 

- remarkable is also the correlation of the series of the best interpolations made with three channels each 

if the determination coefficient is taken as a performance criterion; the variance, as a performance 

criterion of the interpolation, is not correlated with the forward speed. 
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The last statements are also supported by the linear regression tests, which indicate, for example, a 

value of 0.92 for the dependence between the standard deviation of the draft force and the work speed and a 

value of 0.846 for the adjusted coefficient of determination, according to https://jasp-stats.org/. The 

probability of rejecting the linear model with zero free terms is =0.003, so the hypothesis of linear 

dependence is accepted. The proposed linear model is given by relation (8). 

 (8) 
 

In (8),  is the standard deviation of the average resistance force per experiment, and  is the 

average forward speed in the same experiment. 

 
Fig. 4 - Edge effects of forward speed on the standard deviation of the draft force (left)  

and histogram of standardised residuals (right) 
 

Connection tests between random variables and relationships with work speed values  

A PCA analysis, carried out with the help of the JASP programme (https://jasp-stats.org), shows that 

the principal components detected for each of the twelve random variables obtained in each of the seven 

physical experiments are different in each of the seven experiments both in structure and in number. The 

main components detected for each work speed differ in number and structure between the seven sets of 

twelve random variables, and there is no parameter that links the number and structure of the main 

components to the average forward speed of the experiment. On the other hand, the number and structure 

of the main components depend on a series of parameters of the programme and the choice of some work 

options. 

Another test on the link between the signals (random variables) of a data file and between their 

synthetic indicators and the series of forward speeds was obtained using the standardised mean differences 

(SMD)(https://cran.rproject.org/web/packages/TOSTER/vignettes/SMD_calcs.html;https://towardsdatascience.com 

/how-tocompare-two-or-more-distributions-9b06ee4d30bf; https://statisticaloddsandends.wordpress.com/2021/ 

10/31/standardized-mean-difference-smd-in-causal-inference).  

An absolute value of SMD below the threshold of 0.1 is conventionally considered the small one 

between two random variables (https://towardsdatascience.com/how-to-compare-two-or-more-distributions-

9b06ee4d30bf; https://statisticaloddsandends.wordpress.com/2021/10/31/standardized-mean-difference-smd-in-

causal-inference). Discussions on the threshold value for separating small differences between random 

variables and the effects on percentage overlap can be found in 

https://www.psychiatrist.com/jcp/psychiatry/mean-difference-standardized-mean-difference-smd-and-their-

use-in-meta-analysis, for example. The online calculation of SMD can be checked at: 

https://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-SMD1.php. For the seven data sets 

corresponding to the working speeds realised in our experiments, the percentages of SMDs below the 0.1 

threshold (so with small differences between random variables) are listed in Table 3. The maximum 

percentage of signal pairs with small differences between them is 13,636% in the case of the experiment 

with an average working speed of 0.789 m/s. This means that most pairs of signals in all seven experiments 

differ greatly from each other, which is an argument in favour of the random character of the draft force. 

 

Structuring data files with the help of statistical network techniques  

In search of the expression or representation of some of the measured channels, depending on the 

base of channels used as independent variables in the multiple regression calculation, the neural network 

technique was also used, according to the programme from: https://jasp-stats.org/. As dependent variables, 

three random variables out of the twelve were used, corresponding to the deformation sensors mounted on 

the supports of the first line of bodies behind the tractor: ch4, ch23, and ch24. For the experiment with the 

code T2_R2_1500rpmtxt, carried out with an average speed of 0.781 m/s, the network is shown in Fig. 5.  

https://jasp-stats.org/
https://cran.rproject.org/web/packages/TOSTER/vignettes/SMD_calcs.html
https://statisticaloddsandends.wordpress.com/2021/
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On this network, one can read the weights of the relationships between the dependent variables (the 

other nine channels, whose labels are written on the network). The programme also provides many other 

tabulated or graphical data sources. For more information 

https://ro.wikipedia.org/wiki/Re%C8%9Bea_neural%C4%83 and the literature included in this source are 

recommended. The network from Fig. 5 shows the links between the random variables (recordings on each 

of the twelve channels) and the intensity of these links. The model introduced in the programme data tried to 

obtain a forecast of the approximation of the signals from the nine channels in the diagram given in Fig. 5, 

using only the data from the channels on the first line of bodies after the tractor, respectively ch4, ch23, and 

ch24 (see Fig. 1, right). As it was seen from the analysis in 2.4, the three channels do not give the best result 

in the interpolation of the other nine channels. 

According to the reasoning in 2.4, a neural network analysis should be done for each of the 220 cases 

highlighted for the three-channel model used for interpolation. For a larger number of interpolation channels 

(the non-economic case), the number of analyses increases. Practically, this neural network is the precursor 

of an e-learning network, with three nodes as input, nine nodes consisting of the interpolated channels, and 

several nodes for validation, as well as many estimators of the interpolation performance that are used. After 

covering all possible cases, the most favourable case or cases are selected. 

 
Fig. 5 - The neural network corresponding to the R2_T2_1500rpmtxt experiment, carried out with the average 

speed having a value of 0.781 m/s, considering all channels as dependent variables 

 

Figs. 6 and 7 show the structure of the network of random variables formed by the data files of the 

experiments with the codes T2_R2_1500rpmtxt and T2_R2_2700rpmtxt. The network structures of the other 

five experiments are not given because it is established that there are no constant groupings and a fixed 

number of main components (it can be seen in Figs. 6 and 7, experiments with four and three main 

components, under similar setting conditions of the calculation programme) to help us choose the supports 

for mounting a small number of deformation sensors so that the loss of information during interpolation is 

minimal. It is possible to force a constant number of main components with special settings in the calculation, 

but these have hard-to-appreciate consequences on the interpolation errors (under conditions of the uniform 

set of the calculation programme, the number of main components has no significant relationship with the 

value of the forward speed of the aggregate). As a result, principal component analysis is not appropriate for 

our purposes. Similarly, the use of neural networks or machine learning techniques is not beneficial for our 

purposes since there is little physical data, which does not allow us to formulate calculation models in which 

to impose inputs and outputs. 

Working techniques with PCA analysis, neural networks, or machine learning would have made sense 

if there was a complete monitoring of working depth, speed, fuel consumption, etc. Among the parameters 

listed previously, the dependent variables could have been chosen, while the forward speed and the forces 

would have become predictors, for example. 
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Fig. 6 - Diagram of the main components highlighted 

in the data file of the experiment T2_R2_1500rpmtxt 

Fig. 7 - Diagram of the main components highlighted 

in the data file of the experiment T2_R2_2700rpmtxt 

 

COMMENTS 

The physical structure whose characteristics were analysed in the research described in this article 

and in the related precedents (Cardei et al., 2023a, 2023b, 2023c) is a working variant of a cultivator, 

equipped with working bodies whose supports allow vibrations of an appreciable amplitude of assemblies 

formed by bodies and supports. Moreover, the vibrations are transmitted to the supporting structure, leading 

to errors in the working depth. For this reason, such soil processing tools are not intended for work that 

requires high precision in the working depth. Tools of this type have other advantages, as shown, for 

example, in Gheorghita et al. (2017) and Abbaspour-Gilandeh et al. (2020): reducing energy consumption in 

the execution of agricultural works; improving the quality of agricultural technological processes; increasing 

the productivity of agricultural machines; and universalizing certain assemblies or subassemblies of 

agricultural machines. 

Complex mathematical models confirm the operation in the vibration mode of cultivators equipped with 

working bodies used in the experiments of the MCLS variant analysed in this article (Cardei et al., 2015a and 

2015b). According to some previous works, the search for optimal working speeds is related to crossing 

certain speed thresholds (Cardei et al., 2019; Cardei et al., 2021), which cannot always be reached. One of 

the observed effects is that, in the absence of rigorous control of the working depth, the increase in the 

forward speed implies a decrease in the working depth (Cardei et al., 2023b; Chehaibi et al., 2008).  The 

authors Singh et al. (2018) confirmed two clear phenomena: increasing draft force with working speed and 

with working depth. It is also important to note that the increase in draft force due to the increase in working 

depth is much more significant than the increase in the same force due to the increase in work speed, which 

is also shown in Dizaji et al. (2022); Karmarkar and Gilke (2021). However, the authors Singh et al. (2018) do 

not specify whether increasing the working speed affects the precision of the working depth. Kim et al. (2022) 

finds the well-known conclusions also noted by the authors Singh et al. (2018), but, in addition, they also find 

a decrease in the working depth with the increase of the working speed (for each of the three types of soil 

they worked on). The attempt to maintain or increase the working depth results in an increase in the slippage 

of the tractor, a phenomenon noticed by Chenarbon (2022), and implicitly affects the increase in the working 

speed. Experimental research with statistical processing of the results regarding the skidding (or sliding) of 

traction wheels and the effect of loading these wheels is published in Taghavifar and Mrdani (2015). For 

more in-depth studies on the traction performance of tractors, one can consult the work of Zoz and Grisso 

(2003). For electric tractors, the results of similar research, also using inferential statistical analysis 

techniques, are published in Baek et al. (2022). Similar conclusions are obtained by the authors Al-Suhaibani 

and Ghaly (2010), who make additional specifications on the vertical component of traction and on the unit of 

horizontal and vertical draft. The authors Al-Suhaibani and Ghaly (2010) also do not refer to the influence of 

the forward speed on the precision of the working depth. Monitoring the working depth is a difficult problem; 

this may be the reason why it is rarely performed. A solution for monitoring the working depth is presented by 

the authors Kim et al. (2020).  
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The authors Damanauskas and Janulevicius (2022) find the same conclusions relative to the 

dependence of the traction resistance force on the forward speed and on the working depth, their work 

focusing on other very important and less common aspects, namely the dependence of the quality of soil 

processing on the speed and depth of work in two types of soil. The authors Askari et al. (2017) also find an 

increasing dependence of the draft force on working depth and speed. In Askari et al. (2017), it is also shown 

that, under the specified experimental conditions, the increase in draft force decreases, in general (with 

some exceptions), depending on the working speed; that is, the force increases, but its derivative in relation 

to the speed decreases. Similar conclusions are reached by the authors Becker et al. (2019) for operations 

of cutting plant residues in cultivation systems without ploughing (no-tillage systems). The authors Becker et 

al. (2019) use the tools of experimental research and statistical processing of the results, including inferential 

analysis (box-plot representations, statistical tests, interpolations, etc.). According to the results of Becker et 

al. (2019), the traction force increases non-linearly with the working speed, which leads to the same type of 

increase in the hourly fuel consumption. 

Descriptive and inferential statistical tools and the technique of random functions are not new 

techniques; they have been frequently used in the field of motor vehicle research since the second half of the 

20th century (Sireteanu, 1981; Harris and Crede, 1969; Negrus et al., 1983). Moreover, in Myalo et al. 

(2019), Marius Iosifescu drew attention to the delay in the introduction of these tools into education: 

"However, we cannot overlook the fact that, in a striking discrepancy with the role they play today, the theory 

of probabilities and mathematical statistics have not find their place and the appropriate weight in the study 

programmes of technical and economic  influence on the ability of our technical and economic specialists to 

successfully solve the complex problems of tomorrow's world". This is what it was found in Cardei et al. 

(2023b). In addition, these appreciations also refer today to the research activity, where the limits of purely 

theoretical models are becoming more and more visible. 

Regarding the objective of finding possible relationships between the random variables that are part of 

the recordings of some experiments, the literature is poor in such attempts, if not completely devoid of 

examples. Somewhat more complex statistical tools, such as ANOVA-type analyses, were used to highlight 

the effect of soil moisture, working depth, and forward speed on the forward resistance force (Deshpande, 

Shirwal S., 2017; Saleh et al., 2021; Rashidi et al., 2013; Shafei et al., 2018), for example. Multivariate 

regression analysis is used by the authors Sadek et al. (2021) to estimate the effects of forward speed and 

working depth on the longitudinal and vertical components of the draft force. Regression analysis is used by 

the authors Sadek et al. (2021) together with DEM (discrete element method, available at 

https://en.wikipedia.org/wiki/Discrete_element_method) analysis of the working process of a disc in soil. The 

authors Sadek et al. (2021) show that increasing the forward speed and/or the working depth contributes to 

the increase of the longitudinal component (soil draft force) and to the decrease of the vertical component. In 

Myalo et al. (2019), it is shown that the elastic systems of some cultivators increase the traction resistance 

force, but the whole of the working bodies is not studied, but only an individual working body. The authors 

Babitsky et al. (2021) use the shape of the scarab as a source of inspiration for the design of the working 

bodies of a cultivator, but they still limit themselves to an individual working body; they do not address the 

whole, the relationships between the bodies, or the degree of randomness of their movements. Only at the 

theoretical level (mathematical modelling) was an initial approach to the problem of the interaction of the 

working bodies of cultivators made (Cardei et al., 2015b). Modern experiments are done on problems that 

interact deeply with the problem of the effect of the interaction of the working bodies of the cultivators 

(Fanigliulo et al., 2023). Multiple regression prediction models are used by the authors Askari et al. (2017) for 

the prediction of the traction resistance force depending on the forward speed, working depth, and working 

width of a working body wing for three types of bodies: subsoiler, paraplow, and bentleg. The conclusions 

are like those in the published literature and those found in this paper. The authors Saleh et al. (2021) 

proceed in the same way, relative to a characteristic soil for an area of Nigeria. Again, the same conclusions 

apply: the increase in draft force is associated both with the increase in forward speed and with the working 

depth. From the results presented in graphic form, the non-linear trend of these relationships can be 

observed. For the study of the non-linear aspect of the dependence of the draft force on the forward speed 

and working depth (but also on other parameters such as soil moisture, working width, etc.), more data (and 

therefore more experiences) are needed to satisfy the calculation needs of the nonlinear multivariate 

analysis programmes, at least of the second degree. Similar results (increasing draft force with forward 

speed and working depth, as well as the non-linear aspect) are obtained by more complicated statistical 

methods in the paper of Shafei et al. (2018), together with the evaluation of the prediction procedure that 

uses the neuro-fuzzy modelling method. 
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CONCLUSIONS 

 The obtained results allow drawing some conclusions linked to their possible practical application. As 

for example, the triplets of strain sensors that perform the interpolation of all the signals in the processed 

experiments do not at the same time maximise the coefficient of determination R, minimise the variance, and 

minimise the loss of information relative to the average value of the signal. As a result, the statistical results 

show that working with only three deformation sensors, all three optimisation objectives cannot be 

simultaneously achieved. Optimal compromise criteria can be developed. The correlation of the synthetic 

characteristics of the experiments with the forward speeds has high values for the variance over all signals 

(0.9188), the standard deviation (0.9197), the variance of the average signal (0.87388), and the standard 

deviation of the average signal (0.8679). Also interesting are the values of 0.739 for the median of the 

average signal, 0.68 for the coefficient of determination, and -0.68 for the average value of the signal and the 

average signal. As a result, the influence of feed (or work) speed on draft force is most easily found using the 

standard deviation or variance. Also, it appears that the minimum and maximum values of the force on the 

set of the twelve channels of each recording correlate well with the forward speed: the maximum value is in 

direct correlation with the value 0.715, and the minimum in inverse correlation with the value -0.805. The 

twelve signals corresponding to each of the seven experiments with different forward speeds (yet two with 

the same speed value) do not show connections between them and do not show signs of influence, which 

provides an additional reason to characterise the vibrations in the work of the cultivator's bodies as 

predominantly random. The use in the analysis of some complex inferential statistical tools (non-linear 

multivariate analysis, factor analyses, variance analyses, statistical interaction analyses, etc.) can bring new 

data and knowledge only for data collections containing the monitoring of many parameters of the 

experienced and modelled system (input, output, control, and adjustment parameters). The data collections 

analysed in this article and in the previous ones contain only one continuously monitored parameter (soil 

tillage draft force, measured indirectly through strain gauge measurement), the forward speed is estimated 

as an average per experiment, and the working depth is estimated only through a few surveys as a number 

and is ineffective. That is why complete statistical analyses are useless and even impossible in this case. 

Practically, in common experiments and in exploitation, the forward speed, and the working depth (even the 

working width) are random parameters obtained from the interaction of the soil processing machine and the 

entire aggregate with the soil and vegetation. These parameters must be permanently monitored and 

recorded at the values they take; their exact programming has no meaning in such a random framework as 

that of the soil processing phenomenon. It is sufficient to maintain these parameters within the desired limits. 
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