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ABSTRACT 

As one of the ancient cultivated crops in China, millet has the characteristics of high nutritional value, drought 

resistance and barrenness. It also plays an important role in ensuring the supply of food in our country. At 

present, most of the millet breeding work uses manual extraction of phenotypic information, which is labor-

intensive and inefficient. Therefore, the development of an automated, efficient and accurate millet phenotype 

detection method has practical significance for the extraction of the millet genome. In this study, a combination 

of sparse reconstruction based on Structure from Motion (SfM) and Patch-based Multi-View Stereo (PMVS) 

was used to select three different varieties of millet. A total of 81 samples of 9 samples in each period were 

reconstructed to obtain a 3D model of millet. The combination of conditional filtering and statistical filtering is 

used to remove the noise points generated during the photographing process, and finally the obtained point 

cloud data is used to measure the agronomic traits of millet such as plant height and leaf area. The results 

show that the interval angle of 5° is the best reconstruction angle of millet. The coefficient of determination R2 

of point cloud measurement results and manual measurement data regression analysis is higher than 0.94, 

indicating that the method used for 3D reconstruction has high applicability to different millet in different periods 

and high-throughput measurement of millet by the method in this paper is feasible. This study provides a 

theoretical basis for a millet phenotypic information measurement device. 

 

摘要 

谷子作为中国古老的栽培作物之一，具有营养价值高、抗旱耐贫瘠等特点。对我国粮食的供给保障也具有重要

作用。目前，谷子育种工作多采用手工提取表型信息，劳动量大，效率低下，所以发展一种自动化、高效且精

确的谷子表型检测方法对于谷子基因组的提取具有实际意义。本研究采用了基于运动恢复结构（SfM 

Structure from Motion）的稀疏重建和基于面片的多视角立体几何（PMVS Patch-based Multi-View Stereo）

相结合的方法，对三个不同品种的谷子选取三个不同时期每个时期 9 个样本，共 81 个样本进行三维重建得到

谷子的三维模型。利用条件滤波和统计滤波相结合去除在拍照过程中产生的噪声点，最后利用得到的点云数据

对谷子进行株高、叶面积等农艺性状的测量。结果表明隔角度为 5°为谷子的最佳重建角度。点云测量结果与

人工测量数据回归分析决定系数𝑅2均高于 0.94，表明采用的方法进行三维重建对于不同时期不同谷子有较高

的适用性并且通过本文的方法对谷子进行高通量测量是切实可行的。本研究为谷子表型信息测量设备提供了理

论基础。 

 

INTRODUCTION 

 China has the largest millet cultivation area and the largest yield in the world. The sown area accounts 

for more than 90% of the world's sown area. Millet belongs to the Gramineae setaria, with strong drought 
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resistance and desert resistance, being the ideal crop of dry farming, in Inner Mongolia, Shaanxi, Shanxi and 

other areas of arid agricultural areas widely planted.  

 Recently, computer vision has been widely used in crop phenotypic research. The commonly used 

method is through the image processing technology from crops two-dimensional or three-dimensional images 

to extract the relevant properties parameters, production forecast and related analysis, etc. 3D models of crops 

contain spatial information that two-dimensional images do not have, from which more comprehensive and 

more real phenotypic parameters can be extracted, such as leaf area, plant type, photosynthesis related 

parameters, etc. (Gao T. et al., 2021, Xu B. et al., 2017, Rupnik E. et al., 2018, Collier S. et al., 2017.) 

 In recent years, more and more people are combining computer vision technology with agriculture to 

help breeders analyze and screen crop varieties for salt tolerance, drought tolerance and disease resistance. 

Automatic extraction of sorghum morphological characteristics was realized by 3D point cloud data analysis 

(Xiang L, et al., 2019). Fang Wei et al. (2016) proposed a fast 3D reconstruction method for obtaining traits of 

high-throughput plant types. Qiu Q. et al. (2019) used 3D LiDAR point cloud to conduct high-throughput 

phenotypic analysis on maize plants in the field. Hu (2018) calculated crop plant height in the field with UAV 

high throughput. He used Kinect V2 to obtain color images and depth images of citrus trees, and removed the 

background by depth threshold segmentation method, and carried out real-time 3D reconstruction of orange 

tree crowns, which was used for citrus picking barriers. Syngelaki M. et al., (2018), designed Photogrammetry 

system. This system constructed a stereo photogrammetry system consisting of a digital single-lens reflex 

camera, a lighting platform for placing petri dishes and an Arduino board to control the image acquisition 

process. The camera was mounted on a bracket. The camera can rotate at 30°, 45° and 60°, so as to obtain 

multi-view sequence images in different directions. Then Opencv and PCL technologies are used to conduct 

THREE-DIMENSIONAL reconstruction of biological samples in petri dishes. He et al. (2017) built a low-cost 

multi-view stereo imaging system, which can collect image data of Strawberry Fruit 360. Grass was 

constructed based on SFM and MVS technology. Wen et al. (2021) proposes a 3D phytomer-based geometric 

modelling method with maize (Zea Mays) as the representative plant. Specifically, conversion methods 

between skeleton and mesh models of 3D phytomer are specified. Schipper et al.（2023）calibrated and 

validated an existing functional structural plant model (FSPM), which combines plant morphology with a ray 

tracing model to estimate light absorption at leaflet level.” 

 

MATERIALS AND METHODS 

Experimental materials 
 Three representative millet varieties, namely Jingu 21, Dabaigu, and Yuanping Xiaogu, were selected 

as experimental materials. Under the same temperature, humidity and light conditions, 30 plants were selected 

from each variety, and 10 plants were selected from jointing stage, heading stage and filling stage respectively 

for measurement. 

Imaging system mainly includes a visible light camera (Cannon EOS 1300D), Hong Xing Yang electric 

rotating platform, 4 pieces of the LED face plate, a programmable logic controller and computer system objects 

are shown in Fig. 1. A fixed camera on a tripod, height and back angle of depression all can be adjusted 

according to actual condition. Rotating platform can be rotation angle according to need and time interval set. 

 

Fig. 1 – Imaging system 
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In this paper, Zhang Zhengyou calibration method (Zhou, et al., 2009) was used to obtain the internal 

and external parameters and distortion coefficient of the camera to correct the camera. The plants were placed 

on the rotating platform, and the camera was used to take photos of millet. Different intervals were selected at 

1°, 2°, 3°, 5°, 10° and 15°, respectively, and six groups of millet photos with different sequences were obtained. 

When taking photos, the distance between the camera and the position between the plants should be kept 

within 25 cm, and all the leaves of the plant should be in the field of view of the camera. Rotate once each 

time, and take photos when all the leaves of the plant do not shake. 

 
3D reconstruction method 
 In image-based 3D reconstruction of crops, images are acquired by camera, then sparse reconstruction 

based on motion recovery structure is carried out, and then the reconstructed sparse point cloud is 

reconstructed based on faceted multi-view stereo geometry. Finally, point cloud filtering is carried out to obtain 

clear 3D point cloud image.  

 The main algorithm principle is as follows: 

Sparse reconstruction based on SfM 
Feature detection and matching: it is the first step of 3D reconstruction to efficiently and accurately 

detect and match feature points in the image. The feature points of the image are composed of key points and 

descriptors. Key points are feature points with image location information, some of which also have direction 

and scale information. Descriptors are used to describe the information of pixels around key points. Generally 

speaking, the design principle of descriptors is that similar descriptors should be designed according to similar 

features in appearance. Therefore, when matching, two feature points can be regarded as the same feature 

points as long as their descriptors are close in the vector space (Steve H. et al., 2015). 

The detection and matching steps of feature points are as follows: firstly, extract the pixel of feature in 

the image. The scale-invariant feature transform (SIFT) algorithm was adopted to construct scale space by 

differential Gaussian convolution of images at different scales (Lowe D., 2004). Non-maximum suppression 

was used to determine the feature points, remove the low contrast points, and then remove the edge points 

by Hessian matrix, and then determine the main direction of the feature points. Finally, descriptors of feature 

points are calculated according to the key points obtained. In order to keep the invariance of scale, when 

calculating the descriptors of feature points, the image is usually transformed to a unified scale space and 

scale factors are added. Similar to scale invariance, in order to maintain rotation invariance, the direction 

information of key points is added to the calculation of feature point descriptors. Finally, the matching is carried 

out according to the descriptors of feature points. 

Basic matrix estimation 

There are polar geometric constraints for the same point in different images (Qi Z. et al., 2018). Antipolar 

geometry is the internal projective geometry between two views, independent of landscape structure and 

dependent only on the internal and external parameters of the camera. Essentially, the antipolar geometry 

between two views is the geometry of the intersection between the image plane and the plane bundle whose 

axis is the baseline (the line connecting the centers of the two cameras). 

As a mathematical expression of the polar geometry constraint, the basic matrix only depends on the 

internal and external parameters of the camera, and the specific expression is as follows: 

𝐹 = 𝐾𝑇𝑡 × 𝑅𝐾−1                                                                       (1) 

where: 

K represents the internal parameter of the camera, R and T represent rotation and translation of the 

camera. 

Essential matrix estimation 

The intrinsic matrix is obtained by removing the camera's internal parameters from the basic matrix. Its 

purpose is to constrain the matching obtained before, and the matching obtained becomes geometric 

consistent matching. The specific expression of the intrinsic matrix is as follows: 

𝐸 = 𝑡 × 𝑅                                                                                (2) 

Three-dimensional point cloud computing 

Using the known coordinates of the matching points and the internal and external parameters of the 

camera, the 3D coordinates of the matching points are restored. Through iterative calculation, new images 

are constantly added, and the sparse point cloud of millet is finally obtained. 
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PMVS Patch-based Multi-view Stereo (MVS) 

Since sparse point cloud contains less information, dense reconstruction is needed to obtain the dense 

point cloud of millet. The basic idea of MVS is to find the point of image consistency among different images 

in an image sequence. MVS can be divided into three categories (Seitz S., 2006): dense reconstruction based 

on voxel, the rest on another, and dense reconstruction based on fusion of dense depth map reconstruction, 

including the rest based on another dense reconstruction does not require any initial information, such as initial 

bounding box or initial parallax scope, its applicable scope is very broad, so this paper selected based on the 

dense reconstruction. 

As shown in Fig. 2 in the dense reconstruction based on the plane, the plane P is determined by its 

center C(p) and the unit normal vector N(p) pointing to the camera shooting it. A reference image R(p) is 

associated with each facet P, and R(p) selects the image that is nearly parallel to the facet P, which has the 

smallest distortion. Conversely, the reference plane determines the orientation and scope of the rectangle, 

perpendicular to n(p), so that the projection of one of its edges in R(p) is parallel to the image pixel row, and 

its corresponding minimum area in R(p) is μ×μ. One is S(p), which means P is visible in the image, but there 

is an image that is not easy to be recognized or blocked by objects. T(p) represents the image where P is 

really seen, and R(p) is naturally contained in S(P). Two strong constraints are added to the plane model. First, 

the constraint of local width consistency is added to require the projection texture of each plane P to be 

continuous on at least γ images. Second, to add global visual consistency, it is required that the surfaces do 

not block each other in S(p). 

 

Fig. 2 – Sketch map 

 

Each image I was associated with a regular cell C(I,J), whose size was 𝛽𝑖 × 𝛽𝑖  pixels, trying to 

correspond to a facet for each cell, as shown in Fig. 3 Cell C (I,j) tracks two different sets of reconstructed 

facet sets 𝑄𝐼(𝑖, 𝑗) and 𝑄𝑓(𝑖, 𝑗), among which two facet sets may be visible in C(𝑖, 𝑗): if 𝐼 ∈ 𝑇(𝑝)，another is 

stored in the 𝑄𝐼(𝑖, 𝑗), if 𝐼 ∈ 𝑆(𝑝) 𝑇(𝑝)⁄ , is stored in the 𝑄𝑓 (𝑖, 𝑗). At the same time, associate the surface center 

of 𝐶(𝑖, 𝑗) and 𝑄𝑓(𝑖, 𝑗) with the center depth of the camera nearest to it, which is equivalent to assigning a depth 

map to each image I, which will be used in the subsequent visual calculation. 

 

Fig. 3 – Image and cell diagram 
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Given a surface p, its projection normalized correlation function (NCC) N (p, I, J) on two images I and 

J is used to measure their gray consistency. Given a surface p, its reference image is R(p), and the image set 

T(p) of truly visible p can be calculated by maximizing its average NCC value to find the position C(p) of the 

surface and its normal vector n(p). 

�̅�(𝑝) =
1

|𝑇(𝑝)|−1
∑ 𝑁(𝑝, 𝑅(𝑝), 𝐼)𝐼∈𝑇(𝑝),𝐼∉𝑅(𝑝)                                                    (3) 

In order to simplify the calculation, c(p) is appointed to simplify the worthiest problem into three 

dimensions on the ray composed of the optical center of the reference camera and the corresponding image 

points, that is, to obtain the depth and the yaw Angle and pitch Angle of the normal vector n(p) on the ray, and 

then obtain the group optimization parameters by using the conjugate gradient method. In the actual 

calculation, a simple method is used to obtain initial estimates of c(p) and n(p). 

The above process is based on the assumption that the surface of the scene or object is a diffuse 

reflection surface, but when the object or scene reflection surface is specular reflection or there are obstacles, 

the above method cannot obtain the ideal effect. The influence of the non-diffuse plane can be reduced by 

ignoring the images with smaller normalized cross-correlation mean value. That is, a threshold α is set in 

advance, and the image will be adopted only when the luminosity difference between the image and its 

reference image R(p) is less than the threshold α. 

   𝑁∗(𝑝, 𝑅(𝑝), 𝐼) = {𝐼|𝐼 ∈ 𝑇(𝑝), 𝑁(𝑝, 𝑅(𝑝), 𝐼) ≤ 𝛼}                                          (4) 

�̅�(𝑝) =
1

|𝑇(𝑝)|−1
∑ 𝑁 ∗(𝑝, 𝑅(𝑝), 𝐼)𝐼∈𝑇(𝑝),𝐼∉𝑅(𝑝)                                              (5) 

By limiting the brightness difference value, the algorithm effectively avoids the occurrence of non-diffuse 

reflection or obstacles in the image R(p). 

The visibility of each facet is determined by the set of images S(p) and T(p) from which it can be seen 

(partially or truly visible). In the process of dense reconstruction, two slightly different methods are used to 

reconstruct S(p) and T(p) respectively. After the matching stage is completed, the surface is reconstructed by 

matching features, and the visibility of the surface must be determined by the consistency of gray level. 

Specifically, the image whose NCC value of the connected image set exceeds a certain threshold value is 

initialized. 

    𝑆(𝑝) = 𝑇(𝑝) = {𝐼|𝑁(𝑝, 𝑅(𝑝), 𝐼) > 𝛼0}                                               (6) 

On the other hand, in the diffusion process, the surfaces are associated with the depth of the left and 

right images after sufficiently dense reconstruction, and for each surface, S(p) is obtained by specifying a 

threshold value for its depth. That is: 𝑆(𝑝) = {𝐼|𝑑𝐼(𝑝) ≤ 𝑑𝐼(𝑖, 𝑗) + 𝜌1}. Where d(p) is the ray depth of P on 

corresponding image I, 𝑑𝐼(𝑖, 𝑗) is the depth in cell 𝐶(𝑖, 𝑗) related to image I and plane p, and 𝜌1 is the distance 

at depth C(p) after the displacement 𝛽1 of corresponding image R(p). Once S(p) is estimated, gray consistency 

is used to determine where the plane P is actually seen. 

Through 𝑇(𝑝) = {𝐼 ∈ 𝑆(𝑝)|𝑁(𝑝, 𝑅(𝑝), 𝐼) > 𝛼1}  is Confirmed, this method requires the reference 

image R(p) to be the real p, otherwise this method will fail. In order to avoid this situation, relevant methods to 

deal with this problem will be introduced later in this paper. The reliability and consistency of visual information 

can also be improved by iterative matching and filtering. 

PMVS algorithm needs to establish at least one facet for each image cell 𝐶(𝑖, 𝑗), and this process 

mainly has three steps: 

✓ Firstly, feature matching. The motion recovery structure algorithm can obtain the sparse point cloud 

structure and camera parameters of the scene. Therefore, the output of the motion recovery structure algorithm 

is used as the input in this study to complete the process of initialization of sparse surface slices without feature 

extraction and matching. According to the sparse point cloud information, the root node of the octree can be 

initialized, that is, a cube that just completely covers the sparse point cloud.  

✓ Secondly, surface diffusion, in which a sparse set of surfaces is obtained from a dense set of 

surfaces, that is, new surfaces are added around existing surfaces by iterative method until they cover the 

entire surface of the object or scene. More intuitively, given two faces 𝑝 and 𝑝′, if they are stored in adjacent 

cells 𝐶(𝑖, 𝑗) and 𝐶′ (𝑖, 𝑗) of the same image 𝐼, and their tangent planes are adjacent, the two faces are said to 

be adjacent and only new adjacent faces are created where diffusion is necessary, i.e., the face set 𝑄𝑖(𝑖′, 𝑗′) 

is empty, and there are no elements in 𝑄𝑓(𝑖′, 𝑗′) and p is n adjacent relation, where the n nearest neighbor 

relation of 𝑝 and 𝑝′ is: 



Vol. 69, No. 1 / 2023  INMATEH - Agricultural Engineering 

 

584 

|(𝑐(𝑝) − 𝑐(𝑝′)) ∙ 𝑛(𝑝)| + |(𝑐(𝑝) − 𝑐(𝑝′)) ∙ 𝑛(𝑝′)| < 2𝜌2                                      (7) 

The calculation method for 𝜌1 is the same as that for 𝜌2, which is the corresponding distance where 

the midpoint of 𝑐(𝑝) and 𝑐(𝑝′)is depth after 𝑅(𝑝) shift 𝛽1 of the corresponding image.  

✓ Thirdly, surface filtering: The purpose of filtering is to remove the surfaces inside and outside the 

scene or object surface and get an accurate dense point cloud model. Filtering has two steps, further 

implementing the principle of viewpoint consistency in the front diffused and reconstructed surfaces and 

removing false matching the first filter is to remove the surfaces outside the real scene or object surface. 

Suppose there is a sheet 𝑝0, belonging to the set of sheets U containing it. Remove sheet 𝑝0 if sheet 𝑝0 

satisfies the following equation. More intuitively, if sheet 𝑝0 is an external value, then the value of 𝑁(𝑝0) and 

𝑇(𝑝0) should be small and 𝑝0 is more likely to be removed. The second filter is to remove objects in the scene 

or real internal surface, using the image depth map, related recalculate the rest for each another 𝑆(𝑝0) and 

𝑇(𝑝0), when |𝑇(𝑝0)| < 𝛾, remove 𝑝0. Notice that the way you compute 𝑆(𝑝0) and 𝑇(𝑝0)  is different from the 

way you get them in the diffusion process, because after the reconstruction of 𝑝0 , more 𝑝0 has been 

reconstructed.  

Finally perform a weak regularization process: 𝑝, rest for each another statistical image set 𝑆(𝑝) 

contains its cells and facets in surrounding cells, cell and around for n and 𝑝 in rest if a group of another 

neighbor is less than the proportion of the 𝜀 = 0.25, 𝑝 was removed as a value outside the threshold of 𝛼1 

initial value is 0.7, the diffusion and filtering iterative steps after the completion of the threshold value of 𝛼1 set 

the value of 1. 

|𝑇(𝑝0)|�̅�(𝑝0) < ∑ �̅�(𝑝𝑗)𝑝𝑗∈𝑈                                                                   (8) 

 

The dense point cloud of millet was obtained by using PMVS algorithm for sparse point cloud structure 

obtained by SfM and internal and external parameters of camera. 

 

Conditional filter and statistical filter remove noise points 

There are a large number of noise points in Formula 8. Only by removing noise points, outliers and holes 

in filtering pretreatment, can the subsequent steps such as registration, feature extraction and surface 

reconstruction be better carried out. In this paper, conditional filtering and statistical filtering are used to remove 

noise points.  

 

RESULTS AND DISCUSSION 

Influence of interval angle on point cloud precision 

The data sets of the images of the three millet varieties in the same growth cycle were named as 

Dabaigu_ n, Jingu 21_ n and Yuanping Xiaogu_ n according to different rotation interval angles 

(n=1,2,3,5,10,15) and n is the interval angle between two adjacent pictures of the dataset. By 3D reconstruction 

of 18 datasets, the effects of different varieties on the reconstruction accuracy at different intervals were tested.  

 
 

Fig. 4 - Number of point clouds for different varieties of millet at different intervals 
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Fig. 5 - Time of 3D reconstruction of millet at different intervals 

 

It can be seen from Fig.5 that the smaller the interval angle, the more reconstructed views, the more 

points of the reconstructed result cloud, and the closer the reconstructed result is to the reality. According to 

Figures 5 and 6, when the interval angle is less than 5, the number of point clouds keeps increasing, but the 

running time of the program will increase significantly. Therefore, considering the processing time and point 

cloud precision comprehensively, interval angle 5 is the best reconstruction interval angle. 

Measurement of millet phenotype 

In this paper, 3D reconstruction was carried out for the three varieties at jointing stage, heading stage 

and filling stage, and 9 plants were selected in each stage and 81 plants in total were photographed for 

reconstruction. Each plant was photographed at an interval Angle of 5. A total of 72 photos were taken to 

obtain three-dimensional point cloud reconstruction, and the obtained point cloud data were used to calculate 

the plant height, leaf area and other agronomic traits of the samples. 

Phenotype measurement method 

The phenotypic traits measured in this paper were defined as follows: Plant height is from the highest 

point of the plant to the edge of the planting pot. The leaf area is the sum of leaf areas of all point clouds on 

each leaf of millet. 3D reconstruction of three varieties of millet was carried out to obtain the corresponding 

point cloud data, and the point cloud data was used to measure the phenotype of millet. The 3D measured 

area and manual measured area (real area) as well as the 3D measured plant height and real plant height of 

the three varieties of millet were regression, as shown in Fig. 5. It can be seen from the figure that the coefficient 

R2 between the measured leaf cumulus cloud area and the artificial real measured area of Dabaigu, Yuanping 

Xiaogu and Jingu 21 are 0.94, 0.94 and 0.94 respectively; The coefficient R2 between the measured cloud 

height and the measured artificial height were 0.97, 0.97 and 0.96; The correlation between them was tested 

and the results showed that the correlation was significantly different at the level of 0.05. It is proved that the 

high throughput measurement of plant height and leaf area by three-dimensional model has high accuracy. 
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b) 

Fig. 6 - Comparison of 3D measurement data of Jingu 21 with real data  

 

 

 

 

Fig. 7 - Comparison of 3D measurement data of Yuanping Xiaogu with real data  
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Fig. 8 - Comparison of 3D measurement data of Dabaigu with real data 
 

Table 1  
Analysis of phenotypic differences between varieties 

Variety Leaf area (cm2)  Plant height (cm) 

Dabaigu 113.87 a 123.30 a 

Yuanping Xiaogu 103.69 b 104.58 b 

Jingu21 92.33 c 100.20 b 

Note: Different lowercase letters in the same column indicate a significant difference of P<0.05. 

As can be seen from Table 1, at the significant level of 0.05, the difference in leaf area among the three 

varieties was caused by the difference among varieties, and the difference in plant height among Dabaigu, 

Yuanping Xiaogu and Jingu 21 was caused by the difference among varieties. 
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The method uses SfM and PMVS to carry out 3D reconstruction of millet, and uses conditional filtering and 

statistical filtering to filter the point cloud of millet. Through the comparison of the reconstruction accuracy and 

speed of the shooting data set of 3 different millet varieties with different interval angles, it was concluded that 

when the shooting interval was 5, the reconstruction accuracy of millet met the experimental requirements and 

the time was faster. Then, the 3D point cloud data of millet was used to analyze the plant height of millet, 

nondestructive measurement of leaf area, and regression analysis and manual analysis of the measured data.  
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When the spacing Angle was 5, the determining coefficients of plant height and leaf area of three kinds 

of millet were higher. In conclusion, the method adopted in this paper has high applicability to millet samples 

of different varieties and different periods, and provides a reliable basis for the analysis of 3D phenotypic traits 

of millet. However, the parameters measured in the study are still few, and further research is needed on how 

to obtain the number of leaves and canopy structure of millet from point cloud data. 
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