APPLICATION OF INDUSTRIAL ROBOT AND MACHINE VISION IN INTELLIGENT CALDRON FEEDING PROCESS OF CHINESE BAIJIU

ZhongLing XIA1,2, WeiHan CHEN1, Hang ZHAO3, WeiDong SONG4, Ling YANG5, MingJin YANG*1(1)
1) Southwest University, College of Engineering and Technology, Chongqing 400715, China
2) Chongqing Yottametre Industry Automation Co., Ltd., Chongqing 401122, China
3) Southwest University, College of Artificial Intelligence, Chongqing 400715, China
4) Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing 210014, China

Keywords: Chinese Baijiu, caldron feeding, industrial robot, machine vision, automatic distillation

ABSTRACT
In traditional Chinese Baijiu (white wine) brewing factory, most processes were usually done manually. In order to promote industrial automation in liquor brewing industry and alleviate highly repetitive manual labor, an industrial robot operating system equipped with machine vision was designed to accomplish caldron feeding process during the distillation of Chinese Baijiu. Firstly, Modified D-H method was used to establish robot kinematics model. Shovel actuators and peripheral devices were designed to spread and transport grains during caldron feeding process. After that, an online detection system based on machine vision and master computer were designed to control key parameters of caldron feeding process, including grains height, caldron pressure, robot speed and waiting time, etc. Finally, multiple brewing experiments were carried out on crushed grains and spent grains. The experimental results showed that robot system maximum working space was 3.15 m, which could feed 3 caldrons at the same time. During Chinese Baijiu distillation, air pressure average error in caldron was 8.28%. High proportion of first-class liquor and second-class liquor was obtained, which met engineering production requirements.

INTRODUCTION
The six major distilled spirits in the world are brandy, whiskey, rum, vodka, gin and Chinese Baijiu (Xie J. et al, 2022). Chinese Baijiu uses solid-state fermentation and distillation process, which allows alcohol molecules in the fermented spirits to be distilled and purified. Through this process, flavor substances with special aromas are preserved intact (Zhang G. Y. et al, 2017). Caldron feeding process, as one of the core process steps in Chinese Baijiu brewing process, directly determines output rate and quality of liquor. In caldron feeding process, workers spread brewing ingredients in layers, evenly and loosely inside caldron to ensure that steam permeates upward from the bottom layer by layer to distill alcohol. Steam leakage or accumulation during spreading process will affect the quality of Chinese Baijiu (Li Y., 2015).

In traditional Chinese Baijiu brewing factory, caldron feeding process still required a lot of manual work (Zhang J.S., 2017). The process requires cooperation of two skilled operators, one of whom shovels ingredients from pile into dustpan, while the other spreads brewing ingredients from dustpan into 3m² caldron.

1) ZhongLing Xia, M.S. Eng.; WeiHan Chen, M.S. Stud. Eng.; Hang Zhao, M.S. Eng.; WeiDong Sun; Prof. Eng.; Ling Yang, Prof. Eng.; MingJin Yang, Prof. Eng.

DOI: https://doi.org/10.35633/inmateh-69-03
in layers. During the 35-40 min process, workers often have to repeat the shoveling and spreading action hundreds of times, and the total mass of brewing ingredients handled exceed 2000kg (Yang Y. et al, 2021). In addition, manual work was also accompanied by poor working conditions and inconsistent quality (Qing Y. H., et al, 2020). In recent years, industrial robots based on machine vision have been widely used to meet the automation and intelligence requirements of intelligent manufacturing. As the field of robotics continues to expand, it is possible for industrial robots to replace manual labor in caldron feeding process (Jiang W.Y., 2022). However, the caldron feeding machine on the market still suffers from poor accuracy in detecting the surface temperature of fermented grains, poor uniformity in spreading ingredients, and difficulty in controlling path planning and feeding time, etc. (Li L.H. et al, 2018).

In this paper, based on the traditional caldron feeding process and actual working requirements, an industrial robot operating system equipped with machine vision was designed, including robot arm, shovel actuator, machine vision system, master computer and control module, etc. According to layout of caldron and receiving port, the corresponding robot arm type and specification were selected. Modified D-H method was used to establish robot forward kinematics model. Then, applying Monte Carlo method to calculate robot working space to verify that the selected robot met caldron feeding requirements. An online detection system based on machine vision were designed to ensure quality of caldron feeding process. Finally, multiple brewing experiments were carried out on crushed grains and spent grains to verify feasibility of engineering application of intelligent robot caldron feeding system scheme.

MATERIALS AND METHODS

Mechanical system

Robotic arm and shovel actuators

The palletizing robot ABB IRB 660 was mainly composed of fixed base, rotary table, large arm, small arm, gripper mounting flange, joint drive motor, hydraulic cylinder and connecting rod. As shown in Fig. 1, IRB 660 with a 4-DOF parallelogram mechanism had 4 motors, driving rotary table rotation, large and small arms pitch, and gripper rotation, respectively. The working range of the four rotating parts was shown in Table 1. In addition, three links formed a double parallelogram mechanism, which was designed to always keep end-actuator parallel to the ground, so that palletizing robot gripped or placed objects smoothly. The stiffness to mass ratio of the robot was improved indirectly, then its weight and drive power were decreased.

![Fig. 1 – IRB 660 model drawing](image)

Table 1

<table>
<thead>
<tr>
<th>IRB 660 Performance Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: 660-180</td>
</tr>
<tr>
<td>Max. load: 180 kg</td>
</tr>
<tr>
<td>Reach distance: 3.15 m</td>
</tr>
<tr>
<td>Number of axes: 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sport performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis 1</td>
</tr>
<tr>
<td>Rotation range of β_1 [°]</td>
</tr>
<tr>
<td>-180 ~ 180</td>
</tr>
</tbody>
</table>

| **Axis 2** |
| Rotation range of β_2 [°] | Max. velocity [°/s] |
| -42 ~ 85 | 130 |

| **Axis 3** |
| Rotation range of β_3 [°] | Max. velocity [°/s] |
| -20 ~ 120 | 130 |

| **Axis 4** |
| Rotation range of β_4 [°] | Max. velocity [°/s] |
| -300 ~ 300 | 300 |
Shovel actuators were connected to robot arm by flanges. Fermented grains entered actuator at A, then they were transported by a conveyor belt at the bottom of actuator, and finally they spread by dispersing device at B. As shown in Fig. 2, the size of actuator was 475mm*600mm*400mm.

Peripheral Institutions

Peripheral Institutions were equipped with cache hopper, fermented grains operating platform, closed cooler, auto-turning lid, auto-turning caldron, discharger and transfer conveyor. The 3-D diagram of system was shown in Fig. 3 (a), and physical diagram of system was shown in Fig. 3 (b).

Control system

System device

The control system mainly included IPC, robot controller, PLC (Siemens, S7-1200), demonstrator (ABB). Machine vision system included ultrasonic rangefinder, 3D camera and infrared thermal imager, etc. IPC was responsible for receiving data from others to coordinate entire workstation. S7-1200, as the main motion control device, interacted with the robot via the proﬁnet protocol. Ultrasonic rangefinder feeds detected distance data back to IPC or PLC to adjust the height of caldron feeding process. Three caldrons shared a common machine vision system, and inspection device was fixed on stand, which could rotate above caldron respectively. The machine vision device and spatial layout of caldrons were shown in Fig. 4 (a). The installation height of device was 4.5m. As shown in Fig. 4 (b), the outermost feeding radius of caldron $R_{f_{\text{max}}}$ was calculated by:

$$ R_{f_{\text{max}}} = \frac{\sqrt{2}L_c + D_c}{2} $$

(1)

Where:

$R_{f_{\text{max}}}$ is max feeding radius, [mm]; L_c is the distance between caldron, [mm]; D_c is the inner diameter of caldron, [mm]. $R_{f_{\text{max}}}$ is 3.06 m.
Master host

During caldron feeding process, master host controlled robot operating parameters. Main parameters included total height, layer height, current layer number, chain plate velocity, robot velocity and waiting time, etc. Auxiliary parameters included time for stopping feeding in advance and adjustment times. Minimum, maximum and stable air pressure in caldron could be adjusted by master host. In addition, master host monitored running status of robotic arm parameters, such as feeding cycle status, robot power status, shovel actuator coordinate position and manual operation interface. The cooperation of manual operation interface and teach pendant could replenish fermented grains at air leakage area after feeding. The flow chart of control system was shown in Fig. 5.

RESULTS

Motion model

According to above the analysis of palletizing robot IRB 660, a simplified structural diagram of robot was shown in Fig. 6 (a). θ_1, θ_2 and θ_3 are rotation angles of rotary table, large arm and small arm respectively; L_1, L_2, L_3, L_4 and L_5 are lengths of waist, large arm, small arm, wrist and actuator link, respectively. Using modified D-H method to establish 4-DOF robot coordinate system, as shown in Fig. 6 (b), where $a_1=300$ mm, $a_2=1280$ mm, $a_3=1350$ mm.
Forward kinematics was applied to solve posture of actuator in Cartesian space through the value of movement or rotation of each joint of robot arm. According to Modified D-H method, a homogeneous transformation matrix iT_i was used to represent transformation from coordinate system $i-1$ to i. The iT_i was determined by (Rong S. L. et al, 2010; Craig J. J. 2006):

$$^iT_i = \begin{bmatrix}
 c\theta_i & -s\theta_i & 0 & a_{i-1} \\
 s\theta_i c\alpha_{i-1} & c\theta_i c\alpha_{i-1} & -s\alpha_{i-1} & -s\alpha_{i-1} d_i \\
 s\theta_i s\alpha_{i-1} & c\theta_i s\alpha_{i-1} & c\alpha_{i-1} & c\alpha_{i-1} d_i \\
 0 & 0 & 0 & 1
\end{bmatrix}$$

(2)

where $c\theta_i = \cos(\theta_i)$, $s\theta_i = \sin(\theta_i)$, $c\alpha_i = \cos(\alpha_i)$, $s\alpha_i = \sin(\alpha_i)$.

According to Fig. 6 and Table 1, robot modified D-H parameters were listed in Table 2.

<table>
<thead>
<tr>
<th>Joint i</th>
<th>α_{i-1}</th>
<th>a_{i-1}</th>
<th>d_{i}</th>
<th>θ_{i}</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>θ_1</td>
<td>$-180^\circ \sim 180^\circ$</td>
</tr>
<tr>
<td>2</td>
<td>$\pi/2$</td>
<td>a_1</td>
<td>0</td>
<td>θ_2</td>
<td>$-132^\circ \sim -5^\circ$</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>a_2</td>
<td>0</td>
<td>θ_3</td>
<td>$20^\circ \sim 160^\circ$</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>a_3</td>
<td>0</td>
<td>θ_4</td>
<td>$-\theta_2 \sim \theta_3$</td>
</tr>
</tbody>
</table>

When data in Table 2 were substituted into Eq. (2), the homogeneous transformation matrix between four coordinate systems were expressed as:

$$^0T_1 = \begin{bmatrix}
 c\theta_1 & -s\theta_1 & 0 & 0 \\
 s\theta_1 c\alpha_{0-1} & c\theta_1 c\alpha_{0-1} & -s\alpha_{0-1} & 0 \\
 s\theta_1 s\alpha_{0-1} & c\theta_1 s\alpha_{0-1} & c\alpha_{0-1} & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}$$

$$^1T_2 = \begin{bmatrix}
 c\theta_2 & -s\theta_2 & 0 & a_1 \\
 s\theta_2 c\alpha_1 & c\theta_2 c\alpha_1 & -s\alpha_1 & 0 \\
 s\theta_2 s\alpha_1 & c\theta_2 s\alpha_1 & c\alpha_1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}$$

$$^2T_3 = \begin{bmatrix}
 c\theta_3 & -s\theta_3 & 0 & a_2 \\
 s\theta_3 c\alpha_2 & c\theta_3 c\alpha_2 & -s\alpha_2 & 0 \\
 s\theta_3 s\alpha_2 & c\theta_3 s\alpha_2 & c\alpha_2 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}$$

$$^3T_4 = \begin{bmatrix}
 c\theta_4 & -s\theta_4 & 0 & a_3 \\
 s\theta_4 c\alpha_3 & c\theta_4 c\alpha_3 & -s\alpha_3 & 0 \\
 s\theta_4 s\alpha_3 & c\theta_4 s\alpha_3 & c\alpha_3 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}$$

(3)

The homogeneous transformation matrix of the end link relative to base coordinate system was defined as:

$$^0T_4 = ^0T_1 ^1T_2 ^2T_3 ^3T_4$$

(4)
\[
\begin{bmatrix}
 c_i c_{234} & -c_i s_{234} & s_i & c_i (a_i + a_j c_{23} + a_k c_j) \\
 s_i c_{234} & -s_i s_{234} & -c_i & s_i (a_i + a_j c_{23} + a_k c_j) \\
 c_{234} & -s_{234} & 0 & a_i s_{23} + a_i s_2 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

where \(s_{234} = \sin(\theta_1 + \theta_2 + \theta_3) \), \(c_{234} = \cos(\theta_1 + \theta_2 + \theta_3) \), \(s_{23} = \sin(\theta_2 + \theta_3) \), \(c_{23} = \cos(\theta_2 + \theta_3) \).

In addition, the positional relationship between shovel actuators and end link of robot was plotted in Fig. 1. The posture matrix of shovel actuators was expressed as:

\[
\begin{bmatrix}
 c_i c_{234} & -c_i s_{234} & s_i & c_i (a_i + a_j c_{23} + a_k c_j) + 260 \\
 s_i c_{234} & -s_i s_{234} & -c_i & s_i (a_i + a_j c_{23} + a_k c_j) \\
 c_{234} & -s_{234} & 0 & a_i s_{23} + a_i s_2 - 247 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

Meanwhile, the general representation of end link posture matrix was defined as (Li J. L. et al, 2021):

\[
T_s^0 = \begin{bmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}
\]

Simultaneously solve Eq. (5) and Eq. (6), the forward kinematic equation was calculated by:

\[
\begin{align*}
 n_x &= c_i c_{234} \\
 n_y &= s_i c_{234} \\
 n_z &= s_{234} \\
 o_x &= -c_i s_{234} \\
 o_y &= -s_i s_{234} \\
 o_z &= c_{234} \\
 a_x &= s_i \\
 a_y &= -c_i \\
 a_z &= 0 \\
 p_x &= c_i (a_i + a_j c_{23} + a_k c_j) + 260 \\
 p_y &= s_i (a_i + a_j c_{23} + a_k c_j) \\
 p_z &= a_i s_{23} + a_i s_2 - 247
\end{align*}
\]

Workspace and static moment

In order to express the working space of the robot visually, the Monte Carlo method in numerical method was used to calculated, and then MATLAB 2020b was used to draw a spatial point map to realize the visualization of working space of robotic arm. The detailed steps are as follows:

1. Forward kinematics equation was used to obtain transformation matrix of actuator in base coordinate system, where \(P_x \), \(P_y \), and \(P_z \) represent position in space.
2. The random function \(\text{Rand}(j) \) in MATLAB was used to generate \(N \) numbers between 0 and 1 over each point motion range. The random values of each joint variable are represented as:

\[
\theta_i = \theta_{i, \text{min}} + (\theta_{i, \text{max}} - \theta_{i, \text{min}}) \times \text{Rand}(j)
\]

where \(\theta_{i, \text{min}} \) and \(\theta_{i, \text{max}} \) correspond to the minimum and maximum value of \(i \)-th joint variable, respectively.

3. Considering the influence of stop block and avoid mutual interference between members, there is a mutual constraint relationship between joint angles \(\theta_2 \) and \(\theta_3 \), as shown in Fig. 7 (a).

4. Marking the position of actuator in coordinate system to form three-dimensional point cloud image of the working space. The more random points there are, the closer to the actual working space of caldron feeding robot.

In this paper, the value of random point was set to 7000. The x-z plane and spatial result were displayed in Fig. 7 (b) and (c) respectively. There was no obvious hole in simulation, indicating that robot arm could move to various positions within working range. In the horizontal direction, the farthest distance that robot arm could reach was 3.15 m, which met the outermost caldron feeding radius 3.06 m. At the same time, in order to maximize production efficiency, three caldrons were arranged in working space to operate simultaneously.
When the shovel actuator was fully loaded, maximum weight was 150 kg. Static moment analysis of the robot was obtained according to Fig. 6 (a):

\[
\begin{align*}
F_2 &= F_3 = F = 1500 \text{N} \\
M_2 &= F \times (L_2 \sin(-\beta_2) + L_4 \cos \beta_2 + 0.26) = 1500(1.35 \cos \beta_2 - 1.28 \sin \beta_2 + 0.26) \\
M_3 &= F \times (L_4 \cos \beta_2 + 0.26) = 1500(1.35 \cos \beta_2 + 0.26)
\end{align*}
\]

where \(F, F_2, F_3 \) are the forces on wrist, large arm and small arm respectively, [N]; \(M_2, M_3 \) are the hinge point moments of large arm and small arm respectively, [kNm].

As shown in Fig. 8, MATLAB was used to draw the state moment of hinge point. The maximum torque of large and small arm was 4.33 kNm and 2.42 kNm, respectively. The robot could operate safely within the preset range.

Online detection system

The online detection system of the intelligent caldron feeding system was divided into machine vision and air pressure monitoring system. The infrared thermal imager was used to monitor temperature of fermented grains surface inside the caldron in real time. When the surface occurred leaking gas, master host located position timely and accurately. Then the robot was controlled to feed fermented grains at leaking gas position. Simultaneously ultrasonic range finder and 3D camera worked together.
As the height of the fermented grains increased, the area of lower temperature region photographed by infrared camera also increased. The fermented grains were spread evenly without air leakage on the surface, as shown in Figs. 9 (a) and (b). The increased blue area in Figs. 9 (b) and (e) taken by 3D camera also represented height increased. In addition, high resolution RGB photos of Figs. 9 (c) and (f) made it easy for operators to know feeding process of the caldrons.

Pressure monitoring system was shown in Table 2. Air pressure values in three caldrons were set in intelligent caldron feeding system and monitored every 10 minutes. According to Table 2, the average error of air pressure in caldron was 8.28 %, which met requirements of Chinese Baijiu production.

Table 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.2</td>
<td>2</td>
<td>2.2</td>
<td>1.7</td>
<td>2</td>
<td>10.00</td>
</tr>
<tr>
<td>1</td>
<td>2.05</td>
<td>2</td>
<td>2.2</td>
<td>1.7</td>
<td>2.2</td>
<td>6.82</td>
</tr>
<tr>
<td>1</td>
<td>1.98</td>
<td>1.8</td>
<td>2</td>
<td>1.7</td>
<td>1.8</td>
<td>10.00</td>
</tr>
<tr>
<td>2</td>
<td>1.97</td>
<td>1.7</td>
<td>2</td>
<td>1.6</td>
<td>2</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>1.84</td>
<td>1.7</td>
<td>1.8</td>
<td>1.5</td>
<td>1.8</td>
<td>2.22</td>
</tr>
<tr>
<td>2</td>
<td>1.8</td>
<td>1.7</td>
<td>1.8</td>
<td>1.5</td>
<td>1.7</td>
<td>5.88</td>
</tr>
<tr>
<td>3</td>
<td>1.17</td>
<td>1</td>
<td>1.2</td>
<td>0.9</td>
<td>1.2</td>
<td>2.50</td>
</tr>
<tr>
<td>3</td>
<td>1.07</td>
<td>0.8</td>
<td>1.1</td>
<td>0.7</td>
<td>0.8</td>
<td>33.75</td>
</tr>
<tr>
<td>3</td>
<td>1.12</td>
<td>0.8</td>
<td>1.1</td>
<td>0.7</td>
<td>1.1</td>
<td>1.82</td>
</tr>
</tbody>
</table>

Production test

The actual production application of the intelligent caldron feeding system was shown in Fig. 9. The states that fermented grains started to feed, feed in the midway and feed completed were shown in Fig. (a), (b) and (c) respectively.

(d) Infrared image at midway feeding
(e) 3D image at midway feeding
(f) RGB image at midway feeding

Fig. 9 – Online machine vision system

Table 2

Air pressure monitoring value

Fig. 9 – Caldron feeding process
Finally, the surface of fermented grains was paved, and caldron lid cover preparation was done for the distilling, and the distilling process lasted 1h approximately. Taking feeding process of caldron 1 as an example, the sets of some operating parameters in master host were shown in Table 3.

Table 3

<table>
<thead>
<tr>
<th>Feed number</th>
<th>Inner-ring frequency [Hz]</th>
<th>Mid-ring frequency [Hz]</th>
<th>Outer-ring frequency [Hz]</th>
<th>Actual weight [kg]</th>
<th>Preset weight [kg]</th>
<th>Current height [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38</td>
<td>42</td>
<td>67</td>
<td>60.0</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>40</td>
<td>70</td>
<td>68.5</td>
<td>45</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>42</td>
<td>70</td>
<td>70.1</td>
<td>45</td>
<td>129</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>40</td>
<td>70</td>
<td>71.3</td>
<td>45</td>
<td>174</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>44</td>
<td>72</td>
<td>67.1</td>
<td>45</td>
<td>219</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>44</td>
<td>72</td>
<td>65.2</td>
<td>40</td>
<td>264</td>
</tr>
<tr>
<td>7</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>64.8</td>
<td>40</td>
<td>309</td>
</tr>
<tr>
<td>8</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>65.6</td>
<td>40</td>
<td>354</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>64.2</td>
<td>40</td>
<td>399</td>
</tr>
<tr>
<td>10</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>64.7</td>
<td>40</td>
<td>444</td>
</tr>
<tr>
<td>11</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>66.6</td>
<td>40</td>
<td>489</td>
</tr>
<tr>
<td>12</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>64.2</td>
<td>40</td>
<td>534</td>
</tr>
<tr>
<td>13</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>64.2</td>
<td>40</td>
<td>579</td>
</tr>
<tr>
<td>14</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>63.6</td>
<td>40</td>
<td>624</td>
</tr>
<tr>
<td>15</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>66.5</td>
<td>40</td>
<td>664</td>
</tr>
<tr>
<td>16</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>61.7</td>
<td>40</td>
<td>704</td>
</tr>
<tr>
<td>17</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>66.4</td>
<td>40</td>
<td>741</td>
</tr>
<tr>
<td>18</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>65.8</td>
<td>40</td>
<td>778</td>
</tr>
<tr>
<td>19</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>66.6</td>
<td>40</td>
<td>815</td>
</tr>
<tr>
<td>20</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>65.8</td>
<td>40</td>
<td>820</td>
</tr>
<tr>
<td>21</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>65.8</td>
<td>40</td>
<td>825</td>
</tr>
<tr>
<td>22</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>64.5</td>
<td>42</td>
<td>850</td>
</tr>
<tr>
<td>23</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>68.7</td>
<td>42</td>
<td>885</td>
</tr>
<tr>
<td>24</td>
<td>33</td>
<td>45</td>
<td>72</td>
<td>70.6</td>
<td>42</td>
<td>920</td>
</tr>
</tbody>
</table>

There were two raw materials in the actual distillation, namely crushed grains and spent grains, and they were distilled several times separately. The grade of Chinese Baijiu was analyzed. Figs. 10 (a), (b) and (c) represented liquor production curves of crushed grains. Figs. (d), (e) and (f) represented liquor production curves of spent grains. As distillation proceed, the temperature in caldron increased and reached 100°C eventually. The quality of Chinese Baijiu was mainly manifested in different compound aromas, and ethyl caproate was the main component. According to the Chinese national standard GB/T10781.1-2021 (China National standardizing committee, 2021), Chinese Baijiu was divided into first-class, second-class, and third-class liquor, respectively (Wu W. Y. et al, 2022). As shown in Fig. 10, 3 minutes after the distillation, temperature stabilized at around 85°C and caldron began to produce first-class or second-class Chinese Baijiu. When the temperature increased above 85°C, caldron started to produce third-class liquor. The total curve showed that output time ratio for first-class and second-class was much higher than for third-class, so the intelligent feeding system met the actual Chinese Baijiu production requirements.
CONCLUSIONS

In this paper, an intelligent Chinese Baijiu caldron feeding system was designed, including industrial robot selection, machine vision system construction, shovel actuator and peripheral device design, etc. The actual brewing experiments of crushed grains and spent grains were carried out and analyzed. Main conclusions were drawn as follows:

1. Modified D-H method was used to establish robot kinematics model. Monte Carlo method was used to analyze working space of robotic arm. The robot IRB 660 reached 3.15 m in horizontal direction, which was larger than the outermost caldron feeding radius 3.06 m. The maximum torque of large and small arm was 4.33 kNm and 2.42 kNm respectively. The robot IRB 660 met space and moment requirements of caldron feeding.

2. An online detecting system with machine vision and air pressure monitoring was built. The caldron feeding process was displayed clearly in master host. There was no air leak on the surface of fermented grains in the feeding process. The air pressure monitoring result showed that air pressure inside caldron was stable, and average error between actual and set value was 8.28%.

3. The crushed grains and spent grains were brewing in intelligent caldron feeding system. The first-class liquor and second-class liquor were produced around 85 °C, accounting for a high proportion of total curve, which met the actual requirements of Chinese Baijiu production and saved a lot of manual work cost.

ACKNOWLEDGEMENTS

The study was funded by R & D Project of Chongqing Yottametre Industry Automation Co., Ltd. (No. ymdf20220909016).

REFERENCES

