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ABSTRACT  

Accurate spatial distribution of grassland degradation indicator species is of great significance for grassland 

degradation monitoring. In order to realize the intelligent remote sensing grassland degradation monitoring 

task, this paper collects remote sensing data of three degradation indicator species of desert grassland, namely, 

constructive species, dominant species, and companion species, through the UAV hyperspectral remote 

sensing platform, and proposes a multi-feature fusion (MFF) classification model. In addition, vertical 

convolution, horizontal convolution, and group convolution mechanisms are introduced to further reduce the 

number of model parameters and effectively improve the computational efficiency of the model. The results 

show that the overall accuracy and kappa coefficient of the model can reach 91.81% and 0.8473, respectively, 

and it also has better classification performance and computational efficiency compared to different deep 

learning classification models. This study provides a new method for high-precision and efficient fine 

classification study of degradation indicator species in grasslands. 

 

摘要 

准确掌握草地退化指示物种的空间分布对草地退化监测有着重要意义。为实现智能化遥感草地退化监测任务，

本文通过无人机高光谱遥感平台对荒漠草原建群种、优势种和伴生种三种退化指示物种遥感数据采集，并提出

一种多特征融合（MFF）的分类模型。此外，引入垂直卷积、水平卷积和分组卷积机制，进一步减少模型参数

量，有效提升模型的计算效率。结果表明，该模型的总体精度和 kappa 系数分别可达 91.81%、0.8473。同时，

与不同深度学习分类模型相比，也具有更优的分类性能和计算效率。本研究为草地退化指示物种的高精度、高

效率的精细分类提供了一种新方法。 

 

INTRODUCTION 

Grassland desertification is one of the ten most serious ecological and environmental problems in the 

world (Tang et al., 2016). Inner Mongolia Autonomous Region is the province with the largest grassland area 

in China, with a total grassland area of 87 million hectares, accounting for 73.4% of the land area of the region. 

However, under the combined influence of global climate change and human factors, more than 90% of the 

grassland area in the Inner Mongolia Autonomous Region has been severely degraded (He et al., 2021). 

Grassland degradation will not only lead to ecological problems such as soil erosion, sand and dust storms, a 

decrease in grassland productivity, and the loss of biodiversity (Liu et al., 2021; Wang et al., 2020), but will 

also affect the development of local animal husbandry (Briske et al., 2015). Therefore, there is an urgent need 

for efficient and accurate technology and methods for effective monitoring of desert grasslands, to provide 

assistance for the restoration and management of desert grasslands. 

In recent years, some scholars have applied machine learning to grassland degradation monitoring to 

classify grassland characteristics. For example, Yang et al. (2021) achieved the classification of desert steppe 

species by constructing a decision tree classification model. However, this machine learning classification 

method requires manual extraction of a large amount of feature information, which is time-consuming and 

labor-intensive.  
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Subsequently, some scholars began to introduce deep learning into the classification task of grassland 

degradation indicator species to achieve an integrated process from feature extraction to classification. For 

example, Pi et al. (2021) realized the end-to-end classification of grassland degradation indicator species by 

building a 3D convolutional neural network classification model. However, the constructed model not only has 

a large number of network parameters but also needs to be improved in classification performance. In the 

classification of grassland degradation indicator species, the speed of model inference is a necessary factor 

to improve the efficiency of grassland monitoring. Therefore, it is very important to explore a high efficiency 

and high precision classification model for grassland degradation indicator species. 

Currently, a convolutional neural network (CNN) is a widely used hyperspectral image classification 

method in hyperspectral image classification (Liu et al., 2022; Xu et al., 2021). CNN is divided into a 1D 

convolutional neural network (1DCNN), a 2D convolutional neural network (2DCNN), and a 3D convolutional 

neural network (3DCNN). Since the 1DCNN filter is one-dimensional, it can only extract the spectral features 

of hyperspectral images (Hsieh and Kiang, 2020); the 2DCNN filter is two-dimensional, so it can only extract 

the spatial features of hyperspectral images (Shenming et al., 2022); while the 3DCNN filter is three-

dimensional, which has one more spectral dimension compared to 2DCNN, so it can extract the spatial-

spectral features of hyperspectral images, which usually is better than 1DCNN and 2DCNN in terms of 

classification performance (Jung et al., 2022). However, 1DCNN, 2DCNN, and 3DCNN ignore the correlation 

between the pixels to be classified and the neighboring pixels when classifying hyperspectral images. 

To address the above problems, this paper uses an unmanned aircraft remote sensing platform to collect 

data on desert grassland species and proposes a multi-feature fusion (MFF) classification model. The model 

effectively combines the spatial and spectral features of hyperspectral images, as well as the correlation 

information between the pixels to be classified and neighboring pixels, which further improves the classification 

performance of the model. At the same time, vertical convolution, horizontal convolution, and group convolution 

mechanisms are introduced to further reduce the number of model parameters and effectively improve the 

computational efficiency of the model. The purpose of this paper is to explore a high precision and high-

efficiency method to monitor indicator species of desert grassland degradation, in order to provide help for the 

management and monitoring of grassland degradation. 

 

MATERIALS AND METHODS 

Overview of the study area 

The present study area is located on Gegenthala grasslands (111 ° 52′47′ ′ E, 41 ° 46′48′ ′ N) in the Inner 

Mongolia Autonomous Region, China. The grassland type in this area is Stipa breviflora grassland desert, and 

the vegetation is sparse and low, with a cover of only 15-25% and an average plant height of only 8 cm. The 

type of climate belongs to a temperate monsoon climate, with an average annual temperature of 3.5 °C and 

an altitude of 1456 m (Zhang et al., 2022). After investigation, there are more than 20 types of vegetation, 

which can be subdivided into constructive, dominant, and companion species. Here, constructive species are 

Stipa breviflora, dominant species are Cleistogenes songorica and Artemisia frigida, and companion species 

are Neopallasia pectinata, Leymus chinensis, and Ceratoides latens (Pan et al., 2016). 

Experimental equipment 

The instruments used in this study include mainly a hyperspectral imager, a UAV, and a gimbal. Among 

them, the hyperspectral imager adopts the Pika XC2 hyperspectrometer made by Resonon, USA, with a weight 

of 2.2 kg. The spectral range of this spectrometer is between 400 and 1000 nm, the maximum number of 

bands can be set to 447 bands, the spectral resolution is 1.34 nm, and the number of spatial channels is 1600. 

The Jinan Share HEX-8 eight-rotor UAV was selected, with a professional A3 pro flight control system and 

dual positioning systems of BeiDou and GPS, which can perform accurate positioning and autonomous route 

flight. The aircraft has a maximum load of 40 kg and can fly continuously for 30 min at full load with a maximum 

flight speed of 10 m/s. The gimbal is DJI Ronin-M with a weight of 3.6 kg. 

Data collection 

Based on local climatic conditions and vegetation growth, data was collected from July 5 to 15, 2019. To 

reduce the shadow interference, the collection time was between 11:00 and 13:00. At the same time, the 

weather was ensured to be clear and cloudless and the wind speed was lower than 3.5 m/s. After several flight 

experiments, the spatial size of the collected hyperspectral images was set at 6062 lines × 1600 samples, and 

the number of bands was 231; the flight height of the UAV was set at 30 m and the spatial resolution was 2.1 

cm at this time.  
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During the acquisition of 2.5 hm2 hyperspectral image data, the UAV flew autonomously according to the 

planned route and set the bypass overlap rate at 55%. Furthermore, three types of vegetation, namely 

constructive species, dominant species, and companion species, were surveyed in the UAV flight area by 

arranging 1 m × 1 m sample boxes; Only one type of vegetation was included in a single sample box; the 

vegetation coverage, latitude and longitude, and type of vegetation were recorded in the sample boxes. 

Data processing 

The acquired hyperspectral image data were manually checked to remove distorted and overexposed 

images. Reflectance correction of hyperspectral image data was performed using Spectral Pro software to 

obtain the reflectance values of the real features, as shown in Figure 1. From the figure, it can be seen that 

the reflectance values of the last 40 bands fluctuate greatly due to the influence of noise and should be given 

to be removed, and finally 191 bands are retained. In addition, in order to reduce the subsequent calculation 

cost and correlation between the bands, the PCA dimensionality reduction algorithm is applied to reduce the 

number of bands to 15 bands, and this group of bands retains 96.90% of the features of the hyperspectral 

image. 

 
Fig. 1 - Spectral curves of target ground objects 

Dataset Production 

Taking into account the computational cost, the hyperspectral image data was cropped to a spatial size of 

601 lines × 601 samples. Taking into account the data balance problem, the cropped images should contain 

three feature types: constructive species, dominant species, and companion species. Subsequently, the 

cropped images were labeled with samples according to the extensive ground survey. Finally, 187482 

constructive species samples, 158945 dominant species samples, 3049 companion species samples, and 

11725 bare soil samples were obtained, totaling 361201 sample data. This hyperspectral false-color image 

and ground truth image are shown in Figure 2. 

 

 

Fig. 2 - Hyperspectral images and ground truth images 
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ALGORITHM PRINCIPLE 

Spatial feature extraction 

The spatial feature extraction of hyperspectral images is generally performed using convolution kernels of 

n × n (n > 1). In Inception-v3 (Szegedy et al., 2016), it is noted that n × n convolution kernels can be replaced 

by vertical convolution (n × 1) and horizontal convolution (1 × n) to effectively reduce the number of model 

parameters while ensuring classification accuracy. However, the order of vertical and horizontal convolution 

also has some influence on the classification performance of the model. In this paper, the dual-branch 

horizontal vertical convolution (DHVC) module is proposed, see Fig. 3.  

In the figure, 𝐗 ∈ ℝH×W×C is the input hyperspectral data, 𝐘 ∈ ℝH×W×C
 is the output after DHVC spatial 

feature extraction, H×W is the length and width of the input hyperspectral data, C and 𝐶  are the number of 

bands, and 1×1@C/8 conv means there are C/8 convolution kernels for 1×1, and the rest are the same. 

In the DHVC module, the first 1×1 convolution kernel is used to reduce the spectral dimensionality of the 

input data to reduce the model parameters and computational cost. Subsequently, horizontal convolution (1×3) 

and vertical convolution (3×1) by two branches are used for spatial feature extraction, and this structure can 

compensate for the impact on model classification accuracy due to the different order of horizontal and vertical 

convolution. After the extraction of spatial features from the two branches, the outputs of the two branches are 

stitched in the channel dimension. At the same time, 1×1 convolution kernels are used to fuse the features 

across the channels of the spliced data, and the spectral dimension of the data is expanded to 𝐶  to obtain 

the final output 𝐘 ∈ ℝH×W×C
, which is set to 𝐶  = 2𝐶 in this paper. for the two 1×1 convolution kernels, the 

LeakyReLU activation functions are accessed after them. In addition, group convolution is introduced in 

horizontal and vertical convolution to reduce the number of model parameters, and the groups are set to C/64. 

 
 

Fig. 3 - Structure of the DHVC module 

Spectral feature extraction 

The spectral features are extracted on the spectral dimension of individual pixels in the input data block. 

A 1×1 convolution kernel is equivalent to a linear fitting function, so a 1×1 convolution kernel is used to fit the 

spectral features. Meanwhile, the LeakyReLU activation function is introduced to activate the fitted spectral 

features so that they have a nonlinear relationship and can better extract the spectral features. Therefore, the 

extraction of spectral features can be represented by 1×1@𝐶  conv+LeakyReLU. 

Extract of correlation sequence features 

In this paper, a correlation sequence feature extraction (CSFE) module is proposed for the extraction of 

correlation information between the pixels to be classified and the neighboring pixels, see Figure 4. 

 

 
Fig. 4 - Structure of the CSFE module 
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Assuming that the input hyperspectral data 𝐗 ∈ ℝH×W×C, the correlation size between the pixel to be 

classified 𝑥0 ∈ ℝC  and the neighboring pixels 𝑥𝑖 ∈ ℝC, 𝑖 = 1,2, . . . , 𝑛 (n = H × W)  can be calculated by the 

Euclidean distance function. Then the correlation sequence matrix 𝐗 ∈ ℝn×C is obtained by reordering based 

on the correlation size from smallest to largest. The correlation sequence is brought into a single-layer long 

short-term memory (LSTM) network as a temporal sequence for correlation sequence feature extraction, and 

𝐘 ∈ ℝn×C
 is obtained. Finally, the pixels in the 𝐘 matrix are restored to their original positions to obtain 𝐘 ∈

ℝH×W×C
. 

 

MFF Model Framework 

In the MFF model, feature pre-extraction is first performed by a 3×3@64 2D convolution kernel with 

padding set to 1. Subsequently, it is passed into the joint extraction module of spatial and spectral features 

and correlated sequence features.  

The model is set up with 4 layers of the joint extraction module, and the extracted spatial and spectral 

features and related sequence features are summed in each layer, and a 2×2 maximum pooling function is 

used for spatial downsampling between the layers. The spectral feature outputs for each layer are set to 64, 

128, 256, and 512, respectively. Finally, a fully connected (FC) layer with 4 neurons is used for the final 

classification. The structure of this network is shown in Fig. 5, where {64} indicates that the spectral dimension 

of the module output is 64, and the rest is the same. 

 

 
 

Fig. 5 - Structure of the MFF classification model 

 

 

EXPERIMENT AND ANALYSIS 

This experiment uses the Pytorch framework for model construction. Computer hardware devices are i7-

11800H CPU, RTX 3060 graphics card, and 16 GB RAM. The learning rate is set to 0.001, patch to 13, epochs 

to 10, batch size to 128, and Adam optimization function is selected. In the experiment, 50% of the data is 

selected as the training set and the rest as the validation set. In addition, the overall accuracy (OA) and the 

kappa coefficient are selected as the evaluation criteria of the model. 

 

Ablation experiments 

To verify the effectiveness of spatial feature extraction, spectral feature extraction and correlated 

sequence feature extraction of the classification model proposed in this paper, ablation experiments will be 

analyzed, and the experimental results are shown in Table 1. It can be seen from the table that the classification 

accuracy of the model extracting only spatial features is the worst, and its OA value is only 87.79%. After 

adding spectral feature extraction, the OA value of the model is improved by 2.3%, and the kappa is improved 

by 0.048. The MFF model that simultaneously extracts spatial features, spectral features, and related 

sequence features have the best classification performance, with an OA of 91.81% and a kappa of 0.8473, 

indicating the effectiveness of the model proposed in this paper. 
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Table 1 

Analysis of ablation experiments 

Spatial 

features 
Spectral features 

Correlation 

sequence features 
OA / % Kappa 

√   87.79 0.7663 

√ √  90.09 0.8143 

√ √ √ 91.81 0.8473 

 

RESULTS 

Experimental results and analysis 

To better evaluate the classification performance of the MFF model proposed in this paper, a total of three 

classical models, 2DCNN, Resnet18 and Densenet121, were selected for comparison experiments. The 

experimental results are shown in Table 2, the classification effect is plotted in Fig. 6, and the bold in the table 

indicates the highest accuracy. 

As can be seen in Figure 6, the classification effect map of 2DCNN has the worst performance, the 

classification effect map of Resnet18 contains too many noise points, and the classification effect map of 

Densenet121 has too many constructive species identified as dominant species. In general, 2DCNN, Resnet18, 

and Densenet121 are not good at extracting features from small ground objects such as desert grasslands, 

while the classification result of the proposed MFF model is closer to the ground truth image and retains the 

distribution and details of ground objects. 

 

 
 

Fig. 6 - Classification effect images of different models 

 

Table 2  

Comparison of the classification performance of different models (%) 

Category 2DCNN Resnet18 Densenet121 MFF 

Constructive species 82.86 86.70 81.21 92.28 

Dominant species 77.11 88.07 97.49 92.67 

Companion species 30.75 48.59 76.59 78.56 

Bare soil 24.94 40.83 63.48 75.97 

OA 78.01 85.49 87.76 91.81 

Kappa 0.5793 0.7269 0.7729 0.8473 
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Efficiency comparison experiment 

To further evaluate the computational efficiency of the proposed MFF model, the model parameters, 

floating point operations (FLOPs), and prediction time are now selected for efficiency evaluation. The 

comparison model selects 2DCNN, Resnet18, and Densenet121, and the experimental results are shown in 

Table 3. As can be seen from the table, 2DCNN has the least prediction time and FLOPs, but performs worse 

in classification performance. The parameter quantity and prediction time of MFF are better than the two 

classification models of Resnet18 and Densenet121, and the FLOPs are moderate, indicating that MFF has 

faster model calculation efficiency while ensuring classification accuracy. 

Table 3 

Comparison of the computational efficiency of different models 

Models Number of participants / M FLOPs / M Prediction time / s 

2DCNN 5.3 7.3 15 

Resnet18 11.2 17.3 67 

Densenet121 6.9 134 81 

MFF 2.4 18.2 25 

 

CONCLUSIONS 

In this paper, we collected data of three types of degradation indicator species in a desert grassland: 

constructive species, dominant species, and companion species by a UAV hyperspectral remote sensing 

platform, and proposed a multi-feature fusion (MFF) classification model to achieve high precision and high-

efficiency classification performance of fine features in desert grassland. The main findings of this study are 

as follows: 

1) A data set of desert grassland degradation indicator species was established, and a multi-feature fusion 

(MFF) classification model was proposed, whose overall classification accuracy could reach 91.81% and the 

kappa coefficient could reach 0.8473. 

2) Introduce the idea of spectral correlation and use of LSTM to extract correlation features between long-

distance pixels to be classified and neighboring pixels by effective analysis. 

3) The analysis of ablation experiments concludes that the classification of spectral features, spatial 

features, and correlation features of hyperspectral images extracted alone is poor, while the classification 

performance of joint multi-feature extraction is optimal. 

4) Introduce vertical convolution, horizontal convolution, and group convolution mechanisms to further 

reduce the number of model parameters and effectively improve the computational efficiency of the model. 

The dual-branch horizontal and vertical convolution (DHVC) module is proposed to compensate for the impact 

of different back and forward sequences of vertical and horizontal convolution on the classification performance 

of the model. 

5) The overall accuracy of the proposed model is improved by 13.8%, 6.32% and 4.05% compared to 

three classification models, namely 2DCNN, Resnet18 and Densenet121, respectively. 

The effective combination of the MFF model and the hyperspectral remote sensing of the UAV proposed 

in this paper can effectively achieve the identification and classification study of ground objects of grassland 

degradation indicator, providing a new method for monitoring grassland degradation. In the future, different 

feature extraction methods will be considered for joint feature extraction, and the model parameters will be 

optimized to further improve the classification performance and computational efficiency of the model, to 

provide a reference for the management of desert grassland. 
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