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ABSTRACT  

Intelligent agricultural vehicles have been widely used in the process of farming and harvesting in the field, 

which has brought great convenience to agricultural production. However, there are also safety issues such 

as accidental collision of agricultural vehicles or other agricultural machinery during operation. The use of 

sensing technology for the timely and accurate detection and pre-warning of obstacles during the operation of 

agricultural machinery is critically important for ensuring safety. In this paper, a two-dimensional Lidar is used 

to detect obstacles in front of tractors with the Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) algorithm and the Minimum Cost Maximum Flow algorithm (MCMF). A method to judge whether 

the obstacle is static or dynamic and a classification model of different security warning levels for obstacles in 

different states is proposed. Actual vehicle tests were conducted, with static obstacles tested repeatedly, and 

dynamic obstacles tested at different directions and speeds. The results showed that the overall average 

warning accuracy rate is 90.5%. Prediction results were robust for obstacles in different states, indicating that 

this system is able to ensure the safety of agricultural vehicles during their operation and promoted the 

development of agricultural mechanization. 

 

摘要  

智能化农业车辆在田间耕作和收获过程中已广泛使用，给农业生产带来了极大地便利。然而，还存在着在作业

过程中农业车辆误撞人或其他农业机械等安全问题。利用传感技术，及时、准确地对作业农业车辆周围的障碍

物进行检测和预警就有着重要的作用和意义。本文利用二维激光雷达，结合 DBSCAN 点云聚类算法和最小费

用最大流算法对障碍物进行检测和追踪，提出了判断障碍物状态的方法并对不同状态的障碍物提出对应的安全

预警级别划分模型。最后进行了实车试验，对静态障碍物进行了多次重复试验，对动态障碍物进行了不同方向

不同速度的多次重复试验，整体的预警准确率均值为 90.5%。试验结果表明对不同状态的障碍物均取得了良好

的预警效果,推动了农业机械化事业的发展。 

 

INTRODUCTION  

With the continuous development of electronic control technology and sensing technology, the degree 

of automation and intelligence of agricultural machinery and equipment has been continuously improved 

rapidly. Drones equipped with sensors can estimate crop yields (García-Martínez et al., 2020) and electric 

vehicles work together to harvest (Loukatos et al., 2021). They all have brought a lot of convenience to 

agricultural production. However, accidents frequently occur during the operation of agricultural vehicles. For 

example, accidents in which tractors collide with obstacles, people, or animals during their operation in the 

field can be fatal, damage agricultural vehicles, and lead to significant economic losses. The safety production 

of agricultural vehicles is thus critically important. 

Several studies have examined the anti-collision safety pre-warning system in the automotive field. 

Jeong et al. proposed a safety warning information system that can provide warning messages about 

impending dangers by using a networked vehicle environment, thereby increasing the driver’s attention (Jeong 

et al., 2015). Liu et al. proposed a pre-warning algorithm for the vehicle collision avoidance time based on 

vehicle speed. The algorithm sets different safe collision avoidance times according to different vehicle speeds. 

Furthermore, it judges whether warnings are needed by comparing the safe collision avoidance time with the 

time required for the vehicle to collide (Liu et al., 2017).  
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Tak et al. studied a new type of collision warning system that describes the vehicle movement handled 

by the roadside unit. The proposed collision warning system based on segment information overcomes the 

limitations of existing collision warning systems (Tak et al., 2020). The above research environment is the 

urban road traffic environment. They all need to install sensors on the vehicle and the vehicle being detected 

to obtain its information and make an early warning. In the farmland environment, the types of obstacles that 

appear are random, and may be people or livestock, not necessarily other agricultural vehicles, so they are 

not suitable for farmland environments.  

Few studies have examined anti-collision and safety pre-warning systems in the context of agricultural 

production and agricultural vehicles. Zhao studied the BDS-based cross-border system for agricultural vehicles 

involved in soil preparation operations. Guo et al. designed a hierarchical cross-border early warning system 

with cross-border prediction function. Zhu et al. studied the rollover warning of heavy vehicles (Zhao, 2019; 

Guo et al., 2019; Zhu et al., 2011). Kubota Corporation of Japan developed a classification for the dangerous 

warning areas for its smart tractors, but the relationship between moving objects and the tractor has not been 

considered, which has likely caused some unnecessary alarms. Kapilan's research involves automatic 

accident alerts in the event of a vehicle accident. Once a specific vehicle has an accident, the proposed system 

will detect it and immediately send an alert containing the required information to a certain registered number 

(Kapilan et al., 2020). It can be seen that the research on the safety early warning of agricultural vehicles is 

still lacking.  

In addition, environmental information perception is an indispensable and important link in the safety 

early warning system. Perceiving the surrounding environment not only requires detecting obstacles but also 

tracking and predicting the trajectory of dynamic obstacles. MCMF algorithm has also been widely used in 

wireless network control load, large-scale resource scheduling, and multi-target tracking (Sun et al., 2014; 

Chen et al., 2017; Liang et al., 2019). It achieved good results, solved the problem of finding the optimal path 

in the network structure, and can be used to track objects in the point cloud of the Lidar. Cao et al. improved 

DBSCAN to improve the accuracy of multi-radar perception of the environment of autonomous vehicles (Cao, 

Wang, 2016), However, multiple radars are used and the cost is high.  

Asvadi et al. used only a three-dimensional radar and positioning and navigation equipment to detect 

common static and dynamic obstacles in the urban road environment, and the test results verified the feasibility 

of this method (Asvadi et al., 2016). However, the large amount of 3D Lidar data requires high performance of 

the processor, which results in high costs and does not meet the requirements of agricultural production. 

Campos et al. used the machine vision system on the tractor driving in the corn field to detect unexpected 

obstacles or elements in the video sequence, but this method requires higher ambient light (Campos Y. et al., 

2016). Corno proposed an adaptive positioning system based on ultrasonic car sensors for the autonomous 

navigation of agricultural tractors in vineyards, but the accuracy of ultrasonics will change under the influence 

of temperature (Corno et al., 2021). Therefore, two-dimensional Lidar is used to detect obstacles in the 

farmland environment.  

Therefore, in view of the characteristics of the field environment where agricultural vehicles are 

operating, this paper proposes a two-dimensional Lidar-based classification algorithm for agricultural vehicle 

safety warning levels. It takes into account the randomness of obstacles movement in the farmland 

environment. A system is then designed and tested to verify its warning accuracy and assess its applicability. 

The aim of this system is to reduce the occurrence of accidents during the operation of agricultural vehicles to 

ensure the safety of production personnel and production equipment as well as promote the development of 

agricultural mechanization. 

 

MATERIALS AND METHODS 

Research platform   

The research platform uses the Oubao 4040 tractor. The front wheels of the tractor are turned to the 

rear wheels to drive. The agricultural vehicle safety pre-warning system is divided into three parts: perception, 

decision-making, and execution. The sensing part is the UST-20LX two-dimensional Lidar (detection range: 

270°; scanning frequency: 0.25 s; angular resolution: 0.25°; HOKUYO Co., Japan) and Xingwang Yuda XW-

GI5610 Beidou navigation equipment (sampling frequency: 10 Hz; manufactured by StarNeto Co., Ltd., China). 

The controller of the decision-making part is personal computer (PC). It is a host computer that is responsible 

for receiving sensor data, processing data, and making decisions. As the lower computer, Arduino Uno is 

responsible for receiving the signal from the upper computer to control the actuator.  
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The executive part is an LED alarm with red, yellow, and green lights and a buzzer. The buzzer can 

be combined with any colour of light to generate an alarm signal. 

The LIDAR sensor is connected to the PC network port through a network cable for network port 

communication. BDS and PC, upper computer and lower computer are all serial communication devices. The 

GPIO port of Arduino is connected to the relay to control the on and off of the sound and light alarm. The 

sensor layout of the system is shown in Figure 1.  

  
Fig. 1 - Schematic diagram of the overall structure of the system  

 

Coordinate System 

The coordinate system shown in Figure 2 is set, namely the tractor coordinate system XTYTZT, the laser 

coordinate system XLYLZL and the map coordinate system XYZ.  

In the laser coordinate system XLYLZL, the origin OL of the laser coordinate system is the centre of the 

laser line emitted by the laser radar, the YL axis is pointing to the front of the laser radar along the 135° direction 

of the laser beam, and the XL axis is along the 45° direction of the laser beam. Pointing to the right side of the 

Lidar, the ZL axis is perpendicular to the plane formed by the XL axis and the YL axis.  

The tractor coordinate system XTYTZT is the mobile station coordinate system of BDS. The position of 

the coordinate system changes with the movement of the tractor. The origin OT is the installation position of 

the mobile station, the XT axis points to the right along the line connecting the installation positions of the two 

antennas, the ZT axis is perpendicular to the ground and upwards, and the YT axis is perpendicular to the plane 

formed by the XT axis and the ZT axis. 

In the absolute coordinate system XYZ, the starting point of the tractor is taken as the origin O, X, Y, Z 

axes point to true north, true east, and vertical ground upwards, respectively. First, obtain the coordinates of 

the tractor in the absolute coordinate system by analysing the BDS data, and then obtain the relationship 

between the laser coordinate system and the tractor coordinate system from the relative position of the laser 

radar and the BDS installation. 

 
Fig. 2 - Coordinate system 
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Fig. 3 - The geometric relationship between the laser coordinate system and the tractor coordinate system 

 

As shown in Figure 3, p is the difference between OT and OL along the Yaxis; h  is the difference 

between OT and OL along the Z axis. Therefore, the conversion relationship between the coordinates (xL,yL,zL) 

in the laser coordinate system and the coordinates of the tractor body coordinate system (xT, yT, zT) can be 

obtained as 

                              

0T L

T L

T L

x x

y y p

hz z

     
     

= +
     
     −    

                                   (1) 

                                cosLx  =                                         (2) 

                                sinLy  =                                          (3) 

The polar coordinates of the Lidar point cloud are converted to coordinates in the plane rectangular 

coordinate system through formulas (2) and (3). Among them, ρ is the distance between the object detected 

by the Lidar and the Lidar, and θ is the angle between the laser beam and the 0° line. In addition, the 

CGCS2000coordinates provided by BDS are converted to Gaussian plane coordinates by Gaussian 

orthographic projection (Liu, 2018). 

 

Lidar point cloud clustering based on DBSCAN 

DBSCAN is a density-based clustering algorithm. A clustering category is obtained by classifying 

closely connected samples into one category (Yan W Y, et al., 2016). All of the closely connected samples are 

divided into different categories, and the final results of all cluster categories are obtained. Therefore, for high-

density data such as Lidar point clouds, DBSCAN clustering is used. In addition, compared with other clustering 

algorithms, DBSCAN has the advantages of not requiring inputs such as the number of clusters and the shape 

of clusters (Zhang Y.H., et al., 2017). 

The system uses the point cloud library (PCL) to process point cloud data. First, clusters are searched 

by checking the Eps neighborhood of each point in the Lidar data. If the Eps neighborhood of point p contains 

more points than MinPts, then a cluster with p is created as the core object, and objects that are directly 

accessible from these core objects are iteratively gathered. This process sometimes involves the merging of 

clusters with reachable density. When no new points are added to any clusters, the process ends. Different 

colors are then added to the point cloud clusters of different objects. After visualization in Rviz, the approximate 

shapes and positions of different objects in the point cloud can be intuitively observed (Fig. 4). 

 
Fig. 4 - Point cloud clustering renderings 
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Obstacle tracking  

To ensure that safety warnings for both static and dynamic obstacles are accurate, the dynamic 

obstacles need to be tracked to obtain various types of information, such as their movement status. The idea 

in this research is based on the DeepSort tracking algorithm. It uses Euclidean distance as the position metric 

(Buczkowska et al., 2019) and the MCMF to perform data association and applies them to the laser point cloud 

to track the objects detected by the laser to prepare for safety pre-warning.  

 

In the position measurement, Euclidean distance is used to evaluate the degree of matching between 

the state predicted by the Kalman filter and the actual state.  

2 2

2 1 2 1= ( ) ( )x x y y − + −                                (4) 

(x1, y1) and (x2, y2) represents the coordinates of two points, and 𝜌 represents the Euclidean distance 

between these two points. 

The DeepSort algorithm is applied to the image and uses the position of the detection frame for 

calculation (Wojke et al., 2017). For the point cloud data of Lidar, the position of the detection frame is replaced 

with the coordinates of the point cloud clustering center for calculation. The Kalman filter is used for target 

motion state estimation, and the MCMF is used for position matching. 

For each tracking target, the number of frames ak since the last detection result that matches the 

tracking result is recorded. Once the detection result of a target is correctly associated with the tracking result, 

this parameter is set to 0. The maximum threshold Amax is then set for ak. If ak exceeds the set maximum 

threshold, the tracking process for the target is considered to have ended. When the moving object gradually 

moves outside the detection range of the Lidar, the tracking of the object ends at this time. When an object in 

a detection result cannot always be associated with the existing tracker, and the prediction results of the target 

position of the potential new tracker can be correctly associated with the detection result 5 consecutive times, 

then the judgment result is the appearance of new objects, avoiding the situation of “false alarms” caused by 

the jitter of the laser point cloud.  

 

Obstacle status judgment 

From the data collected by Beidou navigation equipment, the driving speed V1 of the tractor is 

analyzed. Analyze and process the Beidou data, and extract the 10th to 12th places of the Beidou data, that 

is Ve, Vn, Vu. Use equation (5) to calculate the tractor speed, denoted as V1:  

2 2 2

1 e n uV V V V= + +                                 (5) 

Obtain the trajectory information and speed information of the obstacle through the target tracking 

algorithm. The speed information is the sub-velocities in the XL and YL directions in the Lidar coordinate system, 

and the speed vector Vr and distance Sr. Theoretically, when the obstacle relative to the tractor's speed Vr and 

the tractor's traveling speed V1 are numerically equal, the obstacle is considered to be stationary; the rest are 

considered to be moving. However, in actual situations, due to the measurement error and calculation error of 

the sensor itself, it is impossible for Vr and V1 to be completely equal in value, so given a threshold k, when: 

1| | | |rV V k−                                     (6) 

The obstacle is considered to be stationary; the rest are considered to be moving. The value of k is 

determined according to the test of the actual equipment, so that the accuracy of static and dynamic judgments 

are both above 90%, and the final value is 1.1m/s. 

 

Security warning level division algorithm 

This security pre-warning level classification algorithm has different classification models for static 

obstacles and dynamic obstacles. It is divided into three levels: From level one to level three, the degree of 

danger gradually decreases. 

Static obstacle  

Taking the tractor as the research object, and establishing the kinematics model of the tractor, as 

shown in Figure 5. In the process of tractor driving, the influence of factors such as slip, side slip and ground 

smoothness are not considered. The model is represented by formula (7) ~ formula (10).  
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Fig. 5 - Tractor kinematics model 

cosx v= θ                                                              (7) 

siny v= θ                                         (8) 

 = = tan
v

L
                                       (9) 

/ sinr L =                                       (10) 

where: x and y – the global coordinates of the tractor rear axle center; 

θ – The heading angle of the tractor in the global coordinate system (°); 

ω – The angular speed of the tractor (rad/s); 

v – The driving velocity of the tractor, v∈(0, vmax] (m/s); 

ψ–The steering angle of the tractor's front wheels (°); 

L –The distance between the front and rear wheels of the tractor (m); 

r –The turning radius of the tractor (m). 

For static obstacles, when the tractor moves forward, the Lidar detects the obstacle, as shown in Figure 

6. At this time, the tractor's motion state is estimated according to its kinematics model. Q(xk, yk) is the tractor 

coordinates determined by GNSS at k, and the point Qʹ(xk+1, yk+1) represents the position of the tractor after 

time ΔT, which is predicted by equation (11). 

1

1

cos

sin

k k k

k

k k k

x x
v T

y y

+

+

     
= +     

     

ψ
Δ

ψ
                            (11) 

 
Fig. 6 - Model prediction 

 

When the tractor turns at the maximum turning angle without hitting the obstacle, it is the critical value 

of turning at this time, that is, the boundary point B of the obstacle is on the trajectory circle where the tractor 

turns at the maximum turning angle. As shown in Figure 7. 

 
Fig. 7 - Critical condition 
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From the geometric relationship, the coordinates (a, b) of point O can be obtained, and the circular 

curve with point O as the center and r as the radius is 

  
2 2 2( ) ( )x a y a r+ − =−                                 (12) 

When predicting the trajectory of the tractor, the coordinates of point B(xB, yB) are substituted into 

equation (12) to determine the relationship between point B and point O. As shown in Figure 8, the first-level 

warning is set to the coordinate of point B within circle 1, the second-level warning is set to the coordinate of 

point B is within circle 1 and circle 2, and the third-level warning is set to the coordinate of point B is outside 

circle 2. Among them, circle 2 is concentric with circle 1, and the radius is r+1. 

 
Fig. 8 - Classification of pre-warning levels 

 

Translating it into judging the distance relationship between point B and point O, the following three 

situations will occur: 

2 2( ) ( )B Bx a y b r− + −                            (13) 

2 2( ) ( ) 1B Br x a y b r − + −  +                        (14) 

2 2( ) ( ) 1B Bx a y b r− + −  +                        (15) 

 

Then when the coordinate of point B conforms to formula (13), the tractor cannot turn to avoid the 

obstacle, it is a first-level warning; when the coordinate of point B conforms to formula (14), the tractor can just 

avoid the obstacle at the maximum turning angle, and it is judged as Second-level early warning; when the 

coordinate of point B conforms to formula (15), the tractor can avoid the obstacle, and it is judged as a third-

level early warning. 

 

Dynamic obstacle 

The set safety distance (Liu et al., 2016) is the distance required for the tractor to brake to stop. This 

article sets two levels of safety distance. The first-level safety distance s is the braking distance required for 

the tractor to decelerate with maximum acceleration. It contains four parts: s1, s2, s3 and s4. It can be seen from 

the acceleration change curve in the braking process shown in Figure 9, where s1 represents the distance 

traveled by the tractor within t1 from the time the system sends a signal to the start of the brake. s2 represents 

the distance traveled by the tractor within t2 from the start of the brake action to the time the brake is applied. 

Therefore, the tractor maintains the initial speed v1 during the two periods of t1 and t2. s3 represents the distance 

traveled by the tractor t3 during the time the brake is applied until the deceleration stabilizes. During t3, the 

tractor starts to decelerate, the braking force starts to increase to the maximum, and the deceleration 

increases. s4 is the distance traveled by the tractor during the period t4 when the deceleration is stabilized until 

the tractor comes to a complete stop. The deceleration reaches its maximum within t4, and the value remains 

unchanged to keep the vehicle moving at a constant deceleration. This stage continues until the speed is zero, 

and the vehicle stops. 
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Fig. 9 - Acceleration over time diagram 

 

(1) The above analysis indicates that the tractor moves at a constant speed during t1 and t2, thus: 

1 1 1s v t=                                         (16) 

2 1 2s v t=                                         (17) 

(2) During t3, the tractor starts to decelerate and the deceleration is increasing. Therefore, the following 

equation can be used: 

dv
kt

dt
=                                         (18) 

max

2

a
k

t
= − , so dv ktdt=   

Since the initial speed of the vehicle at this stage is v1, so: 

2

1 1 3

1

2
v v kt= +                                      (19) 

thereby
2

1

1

2

ds
v kt

dt
= + , so: 

2

1

1
( )

2
ds v kt dt= +                                  (20) 

Initial moment S = 0, so: 

3

3 1 3 3

1

6
s v t kt= +                                     (21) 

k can then be substituted into the above formula to obtain: 

m

2

3 1 3x3 a

1

6
s v t a t= +                                   (22) 

(3) During t4, the tractor uses amax as the deceleration speed to make uniform deceleration motion. At 

this time, the initial speed is v1′ and the final speed is 0, so: 

22

1 3 max 31
4

max2 2 8

v t a tv
s

a
= − +                                (23) 

In summary, the expression of s is: 

1 2 3 4+ + +s s s s s=                                      (24) 

2
2 1

1 1 2 1 3 max 3

max

1 1
( )

2 24 2

v
s v t t v t a t

a
= + + − +                         (25) 

The second-level safety distance s’ is the braking distance required for the tractor to brake at 1/2 of 

the maximum deceleration. s’ also contains four parts: s1, s2, s3 and s4. The meaning of each section of 

displacement is the same as the first-level safety distance.  
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Thus, 

1 2 3 4+ + +s s s s s =                                      (26) 

2
2 1

1 1 2 1 3 max 3

max

1 1
( )

2 48

v
s v t t v t a t

a
 = + + − +                          (27) 

In the system, t1 and t2 are 1.3 s, t3 is 0.2 s, and amax is 6 m/𝑠2 according to the actual equipment used. 

For dynamic obstacles, the speed Vr of the obstacle relative to the agricultural vehicle is a vector. The 

forward direction of the agricultural vehicle (i.e. the x direction of the coordinate system) is in the positive 

direction and vice versa. When the speed is in the positive direction, the obstacle is far away from the 

agricultural vehicle; thus, no pre-warning is considered. When the speed is in the negative direction, the 

obstacle is approaching the agricultural vehicle. At this time, the safety warning level is judged. 

The collision time is calculated according to the movement state of the agricultural vehicle and the 

obstacle at the time t= Sr /Vr. The distance the tractor travels during this time is St = v1t. St is then compared 

with the two-level safety distance to judge the level. To ensure the unified evaluation of the degree of danger, 

a pre-warning evaluation index δ is proposed to rank the degree of danger. 

Suppose i=St /S, j=St /S’ 

 =ij                                        (28) 

δ appears in three situations: 

0 1

j i

i







 


 
 

                                     (29) 

When 0<δ<1, it is judged as a first-level warning; when j<δ<i, it is judged as a second-level warning; 

when δ>i, it is judged as a third-level warning. 

Real vehicle test 

Place static obstacles directly in front of the tractor's forward direction, and through manual tests, 

determine the position where the tractor cannot go around at the maximum turning angle, the position where 

the tractor can go around at the maximum turning angle and the distance does not exceed 1m, and the tractor 

can go around at the maximum turning angle. The positions that pass and the distances differ by more than 

1m correspond to the three lines shown in Figure 10. The tractor is driving forward at a speed of 9km/h 

(±0.8km/h), and the time when the LED warning light is correctly illuminated within each distance is recorded. 

The experiment was repeated three times for data analysis. 

 
Fig. 10 - Static obstacle test plan 

 

The same site was used to conduct dynamic obstacle tests, and human subjects were used as 

dynamic obstacles. Tests were conducted both away from and close to the tractor. The tests away from the 

tractor were conducted as follows: a person walks from the front of the tractor (Figure 11(a)) and the side 

(Figure 11(b)), including the left and right sides, at a brisk walking speed (1.2–1.4 m•s-1) while staying away 

from the tractor. The test was run three times in each direction to determine whether the warning light was 

always green. 
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The other test was conducted as follows: a person approaches the tractor at a distance from the front 

walking at a normal speed (1 m/s (±0.3 m•s-1)), fast walking speed (2 m/s (±0.3 m•s-1)), and jogging speed (3 

m/s (±0.3 m•s-1)) (Figure 11(c). Tests for each type of speed were repeated three times, and the distance and 

speed between the person and the tractor when the warning light changes from green to yellow and to red 

were recorded for data analysis. 

 

     
              (a)Front             (b)Side            (c) approach 

Fig. 11 - Dynamic obstacle test photo 

RESULTS AND DISCUSSION  

It can be seen from the test results that the early warning accuracy rate of this safety early warning 

system for static obstacles is over 85.5%, and the early warning effect is good. The green light area has the 

best effect due to the long distance and long distance, and the error of the Lidar ranging has less influence on 

it. The yellow light area has the shortest distance. A slight bump of the tractor during driving will cause data 

instability, which will lead to a decrease in accuracy. Although the distance of the red light area is also short, 

it is already very close to the obstacle, and the Lidar data error is small, so the accuracy rate has increased. 

The test results of static obstacles are shown in the table below. 

Table 1 
Results of the first test 

Times / Result Correct lighting time / s Error lighting time / s Accuracy Average 

Green light area 6.9 0.90 88.5% 85.4% 

Yellow light area 1.5 0.30 83.3%  

Red light area 3.8 0.70 84.4%  

Table 2 

Results of the second test 

Times / Result Correct lighting time/s Error lighting time/s Accuracy Average 

Green light area 6.8 0.8 89.5% 85.7% 

Yellow light area 1.8 0.3 85.7%  

Red light area 3.2 0.7 82.1%  

Table 3 

Results of the third test 

Times / Result Correct lighting time / s Error lighting time / s Accuracy Average 

Green light area 6.5 0.8 89.0% 85.4% 

Yellow light area 1.9 0.4 82.6%  

Red light area 3.3 0.6 84.6%  

 

When dynamic obstacles are far away from the tractor, the warning light is green more than 96.6% of 

the time, which is consistent with expectation. That is, when the obstacle is far away from the tractor, it is 

considered safe, and no warning is required.  
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In 3.4% of the cases, the lights were not turned on correctly because of the effect of the bumpy terrain 

on the sudden change in tractor speed and the occasional deviation in the speed of BDS. 

The test results of people far away from the tractor are shown in Table 4-6: 

Table 4 
Ahead far away the test results 

Times / Result Correct lighting time / s Error lighting time / s Accuracy Average 

The first test 7.9 0 100.0% 98.3% 

The second test 8.3 0.2 97.6%  

The third test 7.6 0.2 97.4%  

 
Table 5 

Far away from the left side the test results 

Times / Result Correct lighting time / s Error lighting time / s Accuracy Average 

The first test 7.3 0 100.0% 97.9% 

The second test 7.5 0.2 97.3%  

The third test 8.1 0.3 96.4%  

 
Table 6 

Far away from the right side the test results 

Times / Result Correct lighting time / s Error lighting time / s Accuracy Average 

The first test 7.7 0.1 98.7% 99.6% 

The second test 8.4 0 100.0%  

The third test 7.5 0 100.0%  

 

During the test, the tractor drives forward at the tillage speed of 9 km/h; the first-level safety distance 

S is 4.3 m, and the second-level safety distance S′ is 4.8 m. Based on the results in the above table, 94.4% 

of the pre-warning distances are consistent with expectations. In the second test of the human subjects walking 

at normal speeds, St when the green light turns to yellow is slightly larger than S′, which is caused by the 

bumps of the tractor during the driving process. In addition, in the test with artificial jogging, the warning light 

did not appear to be yellow for the first and third repetitions of the test but instead directly changed from green 

to red. The analysis indicated that the movement of the dynamic obstacles is faster at this time; furthermore, 

the range of changes in various parameters is greater, the yellow light range is shorter, and there is no yellow 

light warning. When the dynamic obstacle moves faster, the warning light sends out a red warning signal when 

the tractor is still far away from the obstacle to provide more time for braking or making a turn. Thus, this 

system can send out a red warning signal faster based on the speed of the obstacle when the dynamic obstacle 

is moving rapidly, thus enhancing the safety of operation. To sum up, the pre-warning accuracy of dynamic 

obstacles is 95.5% for the results of faraway experiment and near experiment. The results of people 

approaching the tractor are shown in Table 7: 

Table 7 
Jogging speed test results 

 Normal walking speed Brisk walking speed Jogging speed 

Red Yellow Red Yellow Red Yellow 

The first test 4.16 4.63 3.71 4.46 3.02 - 

The second test 3.98 4.82 3.65 4.39 3.14 4.35 

The third test 4.03 4.69 3.85 4.55 2.98 - 
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CONCLUSIONS 

 This research presents a system suitable for monitoring the surrounding environment of agricultural 

vehicles that can provide a safety warning and proposes a method to detect obstacles and judge the state of 

obstacles through Lidar scanning. Different safety pre-warning models are proposed for static and dynamic 

obstacles. The accuracy of the pre-warning is 90.5% (average value of static obstacle experiment and dynamic 

obstacle experiment results), and faster obstacles correspond to higher danger and more rapid triggering of 

alarms.  

Compared with previous studies, the parameters of this system can be set according to the actual 

agricultural vehicles used, which increases its applicability. In addition, this system features a two-level safety 

distance that can match the degree of danger of different obstacles in more detail. Finally, the motion 

parameters of obstacles are comprehensively considered rather than simply using distance as the criterion, 

which improves the accuracy of pre-warning.  

However, this study only conducted experimental verification using one type of tractor. Thus, future 

studies are needed to verify the model using different types of agricultural vehicle tests. Furthermore, the entire 

safety pre-warning model needs to be modified to accommodate the parameters of different types of 

agricultural vehicles.   
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