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ABSTRACT  

In the past decade, fast and non-destructive methods based on spectroscopy technology have been studied 

to detect and discriminate against food adulteration and agro-products. Numerous linear and nonlinear 

chemometric approaches have been developed for spectroscopy analysis. Recently, various approaches have 

been developed for spectroscopic calibration modelling to detect and discriminate adulteration food and agro-

products. This article discusses the application of spectroscopy technology, including near infrared and 

infrared, in detecting and discriminating the adulteration of food and agro-products based on recent research 

and delivered a critical assessment on this topic to serve as lessons from current studies and future outlooks. 

The current state-of-the-art techniques, including detection and classification of various adulteration in food 

and agro-products, have been addressed in this paper. Key findings from this study, near infrared and infrared 

spectroscopy is a non-destructive, rapid, simple-preparation, analytical rapidity, and straightforward method 

for classification and determination of adulteration in the food and agro-products so it is suitable for large-scale 

screening and on-site detection. Although there are still some unsatisfactory research results, especially in 

detecting tiny adductors, these technologies can potentially detect any adulteration in the various food and 

agro-products at an economically viable level, at least for the initial screening process. In that respect, near 

infrared and infrared spectroscopy should be expanded to cover all food and agro-products sold in the market. 

Only then will there be an acceptable deterrent in place to stop adulteration activity in widely consumed food 

and agro-products ingredients. 

 

ABSTRAK 

Dalam satu dekade terakhir, metode cepat dan non-destruktif berdasarkan teknologi spektroskopi telah 

banyak dipelajari untuk mendeteksi dan membedakan pemalsuan produk makanan dan pertanian. Banyak 

pendekatan kemometrik linier dan nonlinier telah dikembangkan untuk analisis spektroskopi. Baru-baru ini, 

berbagai pendekatan telah dikembangkan juga untuk pemodelan kalibrasi spektroskopi dalam mendeteksi 

dan membedakan pemalsuan produk makanan dan pertanian. Artikel ini membahas penerapan teknologi 

spektroskopi, termasuk inframerah dekat dan inframerah, dalam mendeteksi dan membedakan pemalsuan 

produk makanan dan pertanian berdasarkan penelitian terbaru dan menyampaikan penilaian kritis tentang 

topik ini untuk dijadikan pelajaran dari studi saat ini dan pandangan dimasa depan. Teknik mutakhir saat ini, 

termasuk deteksi dan klasifikasi berbagai pemalsuan dalam produk makanan dan pertanian, telah dibahas 

dalam makalah ini. Temuan utama dari penelitian ini, spektroskopi inframerah dekat dan inframerah adalah 

metode non-destruktif, cepat, sederhana, kecepatan analitis, dan metode yang mudah untuk klasifikasi dan 

penentuan pemalsuan dalam produk makanan dan pertanian sehingga cocok untuk skala besar, penyaringan 

dan deteksi di tempat. Meskipun masih ada beberapa hasil penelitian yang tidak memuaskan, terutama dalam 

mendeteksi adduktor kecil, teknologi ini berpotensi mendeteksi pemalsuan dalam berbagai produk makanan 

dan pertanian pada tingkat yang layak secara ekonomi, setidaknya untuk proses penyaringan awal. Dalam hal 

ini, spektroskopi inframerah dekat dan inframerah harus diperluas untuk mencakup semua produk makanan 

dan pertanian yang dijual di pasar. Hanya dengan demikian akan ada pencegah yang dapat diterima untuk 

menghentikan aktivitas pemalsuan bahan makanan dan produk pertanian yang dikonsumsi secara luas. 
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INTRODUCTION 

In today's worldwide economy, concerns about food authenticity are a top priority. Customers' primary 

focus has changed to the originality of food and agro-products commodities, due to the growing desire for local 

products (Amirvaresi et al., 2021; Wongsaipun et al., 2021; Tao et al., 2021). As a result, indigenous food and 

agro-products are frequently chosen over imported ones. Consumers consider freshness and geographical 

origin when selecting high-quality food products to consume daily, such as meat, flour, flavouring, herbs, and 

spices. 

The increasing population and high cost of produced food and agro-products have created opportunities 

to use adulteration in postharvest processing. The quality control of these products still relies on laboratory 

testing based on chemical analysis. Regrettably, these methods seem expensive, complicated to use, usually 

time-consuming and require a sample preparation step before analysis, in turn, they need many kinds of 

chemical solvent. In that respect, the option of spectroscopy technology, including near infrared and infrared, 

offers a valid key to overcoming some of the abovementioned disadvantages since they allow performing a 

non-destructive evaluation, rapid, easy, eco-friendly, and directly in situ (Galvin-King et al., 2021a; Silva et al., 

2020; Ndlovu et al., 2019). This is why researchers have worked over the years to find another application as 

standard analysis in various fields, especially food science (Ozaki et al., 2021). 

According to the recent literature, many studies have been using spectroscopy technology, including 

near infrared and infrared, to detect and classify the adulteration of food and agro-products. Yet, to date, no 

comprehensive study has reported on it or provided a critical assessment on this topic. Therefore, the article 

presents an overview of the application of near infrared and infrared spectroscopy in detecting and 

discriminating the adulteration of food and agro-products based on recent research. 

 
METHODS 

Applications of spectroscopy technology, including near infrared and infrared, to assess fraud, 

particularly in food and agro-products, have increased each year (Fig. 1). Research papers were searched in 

February 2022 via the electronic database Scopus (www.scopus.com). The keyword for finding the research 

papers using “NIR” or “near-infrared” and “adulteration”. From the first search, research papers can be 

categorized into an article (447), conference article (56), review (41), book chapter (15), conference review (5) 

and short survey (1). Most of the articles published come from China (33.6%), followed by Brazil (11.7%), the 

United States (8.3%), Spain (6.2%), the UK (4.8%), India (4.4%), Italy (4.2%), Ireland (4.1%), Malaysia (3.2%), 

and France (3.0%). The most popular keywords were infrared device (50.4%), near infrared spectroscopy 

(50.4%), adulteration (29.9%), least squares approximations (23.7%), chemometrics (20.4%), principal 

component analysis (19.6%), and spectroscopy, near infrared (18.8%). 

Subsequently, the abstracts of the paper were investigated to include or exclude them in this article. 

From there, 447 documents were further examined, and inappropriate documents were excluded. Excluded 

research papers were carried out because they did not use near infrared or infrared spectroscopy to detect 

adulteration, papers that did not use food and agro-products as the main object of the study, conference 

papers, book chapters, conference reviews, short survey, and review articles. A total of 126 documents were 

used in the further study. An overview of the research papers is shown in Table 1 to Table 3. 

 
Fig. 1 – Metadata Scopus record of research paper per annum and cumulative total of articles until 2021 
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NEAR INFRARED AND INFRARED SPECTROSCOPY FOR FOOD AND AGRO-PRODUCT 

Infrared (IR) spectroscopy uses the spectral range between 800 and 500000 nm, which can be further 

subdivided into the far IR (FIR: 25000 to 500000 nm), the mid IR (MIR: 2500 to 25000 nm), the near IR (NIR: 

800 to 2500 nm), and ultraviolet-visible (UV-VIS: 200 to 780) (Reich, 2016; Ozaki et al., 2021). The application 

of near infrared and infrared spectroscopy for food and agro-products has long been known in the industrial 

world and continues to expand today (Wesley et al., 1995). In general, this technology is utilized to evaluate 

food and agro-products in the form of quantitative and qualitative analysis. The wavelengths used vary widely 

from near infrared spectroscopy (780–2500 nm) to MIR spectroscopy (2500–25000 nm) (Santos et al., 2021; 

Alamar et al., 2020; Pereira et al., 2019). Meanwhile, some researchers combine the wavelength of the near 

infrared spectroscopy region with the wavelength of the visible region wavelength (340–2500 nm) or commonly 

known as VIS-NIR spectroscopy (Pandiselvam et al., 2022; Valinger et al., 2021b; Ndlovu et al., 2021b).  

Likewise, several wavelength ranges in near infrared and infrared spectroscopy for food and agro-

products that have been studied are shown in Fig. 2. Unfortunately, although it has limitations in the spectral 

range, visible near infrared technology (340–780 nm) is still used to detect and discriminate adulteration in 

food and agro-products. However, full-wavelength near infrared (780–2500 nm) and infrared (2500–16000 nm) 

spectroscopy with wider wavelengths are more commonly used for detecting adulterations of food and agro-

products. On the other hand, some studies also combine ultraviolet, visible, and near infrared wavelength 

ranges known as UV-VIS-NIR (325–2500 nm). 

 

 
Fig. 2 – Wavelength range of near infrared and infrared spectroscopy technology 

 

Near infrared spectroscopy technology (780–2500 nm) 

The spectral band represents the interaction of molecules with the near infrared wavelength. The 

chemical content on the samples tends to absorb specific frequencies of light when a sample is irradiated with 

near infrared spectroscopy. Thus, near infrared spectroscopy can provide a fingerprint of the content in a 

sample, especially in food and agro-products. Near infrared spectroscopy has been used in a wide range of 

investigations to find adulteration in foods and agro-products such as livestock (dos Santos Pereira et al., 

2021a; Teixeira et al., 2021a; Mabood et al., 2020), flour (Ndlovu et al., 2021a; Ayvaz et al., 2021b; Tao et al., 

2021), liquid agro-product (Tan et al., 2021; Valinger et al., 2021b; Du et al., 2021b), and herbs and spices 

(Castro et al., 2021; Cantarelli et al., 2020; Rukundo and Danao, 2020).  

Near infrared spectroscopy offers a fast, effective, and low-cost alternative procedure that can provide 

clues about the chemical content and physical properties of the samples. The more affordable near infrared 

spectroscopy technology is due to the fact that more and more mechatronic industries are developing 

spectrometer packages that are simpler, more portable, and smaller in size than the benchtop types available 

in the laboratory.  

Several studies have reported that it detects adulteration in food and agro-products using portable near 

infrared spectroscopy in the wavelength range of 908–1676 nm, 950–1650 nm, 1351-2551 nm and 1600–2400 

nm (dos Santos Pereira et al., 2021b; Oliveira et al., 2020; Aykas and Menevseoglu, 2021; Correia et al., 2018; 

Silva et al., 2020; Torres et al., 2021; Santos et al., 2013). Although many industries have developed near 
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infrared spectroscopy technology packages, unfortunately, they will still be relatively expensive over the next 

few years. On the other hand, near infrared spectroscopy instruments generate a large amount of data that 

require an adequate method to build useful analytical information. Combining chemometric and near infrared 

spectroscopy techniques is required to collect as much associated information from the spectral data as 

possible (Genis et al., 2021). In this case, chemometrics is the science of extracting information from a 

chemical system through data-driven methods.  

The use of a wider spectral region allowed them to obtain more information related to the stretching and 

deformation vibrations of the C–H, O–H, and N–H groups that are abundant in a sample. For example, from a 

honey sample, wavelengths in the visible region up to near infrared (400–2500 nm) are related to those 

compounds in the honey that absorb in the blue-violet range, giving the characteristic orange-amber color of 

the honey (Yang et al., 2020). In the near infrared region, the wavelength at 1451 nm is related to the first 

overtone of the vibrational mode of the O–H stretch from water (Huang et al., 2020a). Therefore, signal regions 

of near-infrared and infrared spectra are needed to understand the compound in the samples with greater 

precision. With that in mind, the next step is to focus only on the few wavelength regions that can provide the 

information that correlates with the compounds in our sample. In addition, portable near infrared spectroscopy 

with a narrow wavelength region can be utilized, while providing high accuracy. 

 

Infrared spectroscopy technology (2500–16000 nm) 

Infrared spectroscopy data cover the 2500 to 16000 nm range used to represent fundamental vibrations, 

molecular overtones, and combination vibrations. The absorption areas are predominantly composed of 

hydrogen-containing groups related to the acid, oil content, protein, sugar, and water of food and agro-

products. Consequently, the spectral contains chemical information by reflecting the molecular structures from 

the samples.  

Several recent studies have been carried out using infrared spectroscopy technology to detect and 

discriminate adulteration of food and agricultural products for livestock products, including milk and eggs 

(Hosseini et al., 2021; Botelho et al., 2015; Uysal and Boyaci, 2020). In addition, flour products have been 

investigated for products including pistachios and peppers (Aykas and Menevseoglu, 2021; Galvin-King et al., 

2020a). Liquid products have also been studied for products including yogurt, guava pulp, durum wheat pasta, 

and butter oil (Temizkan et al., 2020b; Alamar et al., 2020; De Girolamo et al., 2020b; Pereira et al., 2019). For 

herbs and spices, products have been studied, including those of black pepper, garlic, and saffron (Wilde et 

al., 2019; Galvin-King et al., 2021a; Amirvaresi et al., 2021). Nevertheless, the most challenging thing for 

researchers in adulteration studies in this range spectral is to explain the connection between absorption in 

the spectral region with the chemical content of food and agro-products. Occasionally, the various intrinsic 

properties to be determined usually lead to non-linear patterns. Finally, many linear and non-linear 

chemometric approaches have been developed for quantitative and qualitative analyses to tackle this problem. 

 

ANALYSIS DATA 

Spectral data analysis is the most important part of obtaining the information contained therein. In 

general, the procedure that must be followed in extracting the information in the near infrared and infrared 

spectra, especially related to the purity of food and agro-products, is presented in Fig. 3. Food and agro-

products that have been adulterated with an adulterating agent will create different infrared spectra data as a 

result of the various functional groups in the material. However, this will not necessarily produce information 

without developing a calibration model, which is followed by testing to build a predictive model. Furthermore, 

the predictive model performance should also be tested with several unknown datasets to create a proven 

model. 

In many cases of adulteration of food and agro-products, the processing and pre-treatment steps are 

very important to reduce noise spectra data. Furthermore, many linear and nonlinear chemometric 

approaches, including Partial Least Squares Regression (PLSR), Principal Component Regression (PCR), 

Support Vector Machine (SVM), and Artificial Neural Network (ANN), have been developed to quantify the 

physical and chemical properties of food and agricultural products to acquire information from spectral data. 

The last two algorithms are the newest, along with the k-nearest neighbour (k-NN), the Convolutional Neural 

Network (CNN), and the Radial Basis Function Neural Networks (RBFNN) based on machine learning, which 

are reported to produce the best predictive models compared to PLSR and PCR (Xie et al., 2008; Alamar et 

al., 2020; Liu et al., 2021). 
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Fig. 3 – Procedure of model construction and performance evaluation 

 

Pre-processing data 

The difficulty of using spectral data for food and agro-products quality assessment stems from the need 

for a strong and accurate model with low sensitivity and low-intensity spectral data. Almost all studies involving 

near infrared and infrared spectroscopy use pre-processing data to avoid noise from light scattering, 

instrumental drift, particle size variation, and also high overlaps between combination bands and overtones to 

address this problem. Pre-processing is a method used to go from raw data to clean data ready for analysis 

including removing baseline artifacts, peak selection, or alignment. Pre-treatment is to transform the pre-

processed data to make them suitable for analysis, including normalization, scaling, transformations, and 

removing any outliers in the data. 

The application of pre-processing does not always provide the best results. For example, Valinger et al. 

(2021b) did not apply pre-processing or pre-treatment to its spectral data. However, they could provide an 

RPD value greater than 3 using the PLSR algorithm to detect fructose corn in honey. However, Santos et al. 

(2021) reported that pre-processing of SNV to detect adulteration of cocoa solids gave better results than 

without the application of pre-processing. Therefore, we conclude that applying pre-processing to near infrared 

and infrared spectroscopy data is a procedure that must be tested regardless of the results obtained. 

 

Linear approach 

A linear approach in near infrared and infrared spectroscopy data analysis will be successful if a linear 

association exists between the absorbance spectra and predicted content, more commonly referred to as the 

Beer-Lambert law. It is capable of conducting qualitative and quantitative analyses of adulteration in food and 

agro-products. The linear chemometric methods that were used most frequently to formulate a qualitative and 

quantitative analysis of adulteration in food and agro-products were PLSR, PCR, Partial Least Squares 

Discriminant Analysis (PLS-DA) and Principal Component Analysis-Linear Discriminant (PCA-DA) (Kazazić et 

al., 2021; Paradkar et al., 2002a; Gayo et al., 2006). 

In general, linear chemometric methods from IR spectroscopic data can be evaluated with several 

parameters. The parameters most used, including calibration and cross-validation (CV), are the determination 

coefficients (R2), the coefficients correlation (r), the Root Mean Square Error (RMSE) and the Standard Error 

(SE). In addition, some use difference average value between predicted and measured values (Bias), Range 

Error Ratio (RER), and Predicted Deviation Ratio (RPD). Each parameter has its own purpose in evaluating 

the model. Coefficient determination indicates how well a model performs in terms of the proportion of variance 

in the dependent variable predicted by the independent variables. The RPD shows the robustness of the 

model. SE and RMSE indicate the level of precision and accuracy of the developed model. 

 

Non-linear approach 

Another method to analyse near infrared and infrared spectroscopy data of adulteration in food and 

agro-products associated with chemometrics is a non-linear approach. This approach is required when the 
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connection between the spectral absorption region of the IR spectroscopy is non-linear. The origin of these 

non-linear relationships is diverse and challenging to identify, but according to Ramírez-Morales et al. (2016), 

in some cases, due to the disparities in viscosity, temperature, pH, particle dimensions, and chemical content. 

Calibration is generally achieved utilizing non-linear methods and multivariate analysis for this reason. A 

reasonable variable selection aimed at collecting a small sub-group with lower sensitivity to non-linear or 

excluding the most wavelengths is usually effective in enhancing the model's performance (Kaufmann et al., 

2022; Pandiselvam et al., 2022). 

The research that applies a non-linear approach in chemometrics for detecting and authenticating 

adulteration on food and agro-product is currently in constant expansion. As mentioned before, a non-linear 

approach to analysing near infrared and infrared spectroscopy data can also perform qualitative analysis and 

quantitative prediction of adulteration in food and agro-products. Machine learning-based chemometric 

research is rapidly expanding at the moment. ANN, CNN, k-NN, RBFNN, RF, SVM are also more reported to 

analyze IR spectroscopy data of adulteration in food and agro-product as these techniques are based on 

pattern recognition (Weng et al., 2020; Ding and Xu, 2000; Le Nguyen Doan et al., 2021). 

 

SOME CASE ADULTERATION ON FOOD AND AGRO-PRODUCTS 

Near infrared and infrared spectroscopy analysis has been applied to both detecting and discriminating 

adulteration of food and agro-products. Qualitative evaluation can be the detecting of adulteration in livestock 

products, flour products, liquid agro-product, and herbs and spices (Table 1). In contrast, the quantitative study 

concentrates on predicting multiple contents adulteration of food and agro-products has been reported quite a 

lot recently (Table 2). In the present studies, various IR spectroscopy ranges are utilized for the quantitative 

and qualitative analysis of food and agro-products, including near infrared and infrared spectroscopy data 

(Table 3). 

Table 1 
Some qualitative study of food and agro-product adulteration 

  # Source Objective 
(Sample 
number) 

Adulterant 
material 

Range of 
spectral 

(nm) 

The best of Prediction 
results Pre-treatment Algorithm 

1 (de Araújo et al., 
2021) 

Gourmet 
ground 
roasted 
coffees (90)  

Traditional and superior 
coffees 

1205 – 
2128 

Offset 
correction 

SIMCA Specificity = 
100%  

2 (Srinuttrakul et 
al., 2021) 

Hom Mali rice 
(170) 

Rice from northern and 
north-eastern regions of 
Thailand  

740 – 
1070 

MSC+ 1st dev PLS-DA Accuracy 
=84.85 –
86.96% 

2500 – 
22222 

Accuracy = 
96.97 –100% 

3 (Tan et al., 2021) Stingless bee 
honey (30) 

High fructose corn syrup 900 – 
1700 

Cutting + 
Gaussian 
smoothing 

LR Accuracy = 
98.2% 

4 (dos Santos 
Pereira et al., 
2021a) 

Goat milk 
(146) 

Cow milk 900 – 
1650 

Moving mean + 
Baseline offset 

iSPA-PLS-
DA 

Accuracy = 
98.3% 

5 (Shannon et al., 
2021) 

Basmati rice 
(1399) 

Other varieties basmati 
rice  

740 – 
1070 

Raw PLS-DA F1_score = 
0.93 

6 (Tao et al., 2021) Wheat flour 
(48) 

Eight varieties of 
cassava flour 

1150 – 
2150 

Raw PLS-DA Accuracy = 
97.53% 

7 (Galvin-King et 
al., 2021b) 

Garlic (117) 12 types of white powder 833 – 
2500 

SNV + 1st dev 
SG 

OPLS-DA Youden 
index = 0.98 

2500 – 
18182 

Youden 
index = 1 

8 (Teixeira et al., 
2021b) 

Yogurt and 
Cheese from 
goat milk 
(576) 

Cow milk 1000 – 
2500 

Smoothing + 
2nd dev SG 

PLS-DA Sensitivity = 
99.2 – 100% 
Specificity = 
99.2 – 100% 

9 (Torres et al., 
2021) 

Sweet 
almonds 
(216) 

Bitter almonds 950 – 
1650 

SNV + 1st dev 
SG 

PLS-DA Non-error 
rate = 86 – 
100% 

10 (Le Nguyen 
Doan et al., 
2021) 

High-quality 
rice (200) 

Low-quality rice 740 – 
1070 

1st dev SG + 
mean centered 

PLS-DA Accuracy = 
82.6% 

11 (Cantarelli et al., 
2020) 

Cinnamon 
verum (120) 

Cinnamon cassia 940 – 
1640 

Raw PNN Accuracy = 
99.25% 

12 (Huang et al., 
2020b) 

Honey (224) Syrup 1000 – 
2500 
2222 – 
12500 

2nd dev SG SVMC Accuracy = 
100% 
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  # Source Objective 
(Sample 
number) 

Adulterant 
material 

Range of 
spectral 

(nm) 

The best of Prediction 
results Pre-treatment Algorithm 

13 (Galvin-King et 
al., 2020b) 

Powdered 
paprika (159) 

Varying seed/pod 833 – 
2500 

SNV + 1st + 2nd 
dev SG 

OPLS-DA R2 = 0.85 

2500 – 
18182 

SNV + 1st dev 
SG 

R2 = 0.94 

14 (Alamar et al., 
2020) 

Guava pulp 
(240) 

Sugar and water 1000 – 
2500 

MSC k-NN Accuracy = 
100% 

2500 – 
25000 

Accuracy = 
100% 

15 (De Girolamo et 
al., 2020a) 

Durum wheat 
pasta from 
Italy (280) 

Durum wheat pasta from 
Argentina 

1000 – 
2500 

Mean baseline 
+ detrending 

PLS-DA Accuracy = 
97 – 100% 

2500 – 
25000 

MSC + 
detrending 

Accuracy = 
96 – 97% 

16 (Teixeira et al., 
2020) 

Goat milk 
(600) 

Water, urea, bovine 
whey, and cow's milk 

1000 – 
2500 

1st dev SG + 
SNV 

PLS-DA Precision = 
100% 

17 (Visconti et al., 
2020) 

Grated 
cheese (196) 

Microcrystalline 
cellulose, silicon dioxide, 
wheat-flour, wheat-
semolina, sawdust 

1000 – 
2500 

1st dev SG PLS-DA Precision = 
100% 

18 (Jahani et al., 
2020) 

Lime juices 
(56) 

Water and citric acid 900 – 
1700 

MSC k-NN Precision = 
100% 

19 (Wilde et al., 
2019) 

Black pepper 
(126) 

papaya seeds, chili and 
non-functional black 
pepper material 

833 – 
2500 

SNV + 1st dev 
SG 

OPLS-DA Precision = 
90 – 100% 

2500 – 
25000 

Precision = 
92 – 100% 

20 (Karunathilaka et 
al., 2018) 

Milk powder 
(383) 

11 potential adulterants 800 – 
2500 

SNV + 1st dev 
SG 

SIMCA Accuracy = 
100% 

21 (Chen et al., 
2017) 

Milks (102) Melamine 1000 – 
2500 

SNV OC-PLS Accuracy = 
89% 

22 (Shen et al., 
2016) 

Soybean 
meal (88) 

Six types of non-protein 
nitrogen 

1282 – 
2500 

1st dev SG + 
SNV 

PLS-DA Sensitivity = 
100% 

23 (Ziegler et al., 
2016) 

Wheat 
kernels and 
flours (1225) 

Bread wheat, spelt, 
durum, emmer, and 
einkorn 

1200 – 
2400, 650 
– 2500 

1st dev SG PLS-DA Accuracy = 
80 – 100% 

24 (Xu et al., 2015) Tea (100) Exogenous amino acids 833 – 
2500 

SNV PLS-DA Accuracy = 
0.936 

25 (Schmutzler et 
al., 2015) 

Pork meat 
(84) 

Pork fat 833 – 
2500 

2nd dev SG SVMC Accuracy = 
83.3% 

26 (Botelho et al., 
2015) 

Raw cow milk 
(155) 

Water, starch, sodium 
citrate, formaldehyde, 
and sucrose 

2500 – 
16667 

1st dev SG + 
Smoothing 

PLS-DA Sensitivity = 
88.5 – 100% 

27 (Ding et al., 
2015) 

Sweet potato 
powder (116) 

purple and white sweet 
potato 

700 – 
2500 

Selection 
wavelength 
using GA-PLS 

LDA Accuracy = 
100% 

28 (López et al., 
2014) 

Hazelnut 
paste (135) 

Almond paste and 
Chickpea flour 

1000 – 
2740 

Offset 
correction 

SIMCA Accuracy = 
96.3% 

29 (Zhang et al., 
2014) 

Raw cow milk 
(800) 

pseudo proteins (urea, 
ammonium nitrate, 
melamine) and 
thickeners (dextrin and 
Starch) 

1000 – 
2500 

SNV SVMC Precision = 
96.62% 

30 (Xu et al., 2013a) Chinese 
glutinous rice 
flour (215) 

Extraneous adulterants, 
unwanted variations 

1000 – 
2500 

2nd dev SG OC-PLS Specificity = 
0.92 

31 (Xu et al., 2013b) Chinese 
yogurt (257) 

Edible gelatine, 
industrial gelatine, soy 
protein powder 

833 – 
2500 

SNV OC-PLS Specificity = 
0.95 

32 (Xu et al., 2013c) Lotus root 
powder (85) 

Four cheaper starches 833 – 
2500 

SNV SIMCA Specificity = 
0.94 

33 (Chen et al., 
2011) 

Honey (144) High fructose corn syrup 1000 – 
2500 

1st dev SG + 
smoothing + 
mean centering 

PLS-DA Accuracy = 
96.88% 

34 (Zhu et al., 2010) Honey (135) Sweeteners materials 1000 – 
2500 

SNV + 
Smoothing SG 

SVM Accuracy = 
95.1% 

35 (Xie et al., 2008) Pure bayberry 
Juice (129) 

Water 800 – 
2400 

SNV RBFNN Accuracy = 
97.62 

36 (Downey et al., 
2003) 

Honey (300) Fructose and glucose 400 – 
2498 

2nd dev SG PLS-DA Accuracy = 
96% 

 

1st dev SG = First derivatives Savitzky-Golay; 2nd dev SG = Second derivatives Savitzky-Golay; iSPA-PLS-DA = Intervals SPA – Partial 
least squares – algorithm discriminant analysis; k-NN = k-nearest neighbour; LDA = Linear discriminant analysis; LR = Logistic 
Regression; MSC = Multiplicative scatter correction; OC-PLS = One class – partial least squares; OPLS-DA = Orthogonal partial least 
squares – discriminant analysis; PLS-DA = Partial least squares – discriminant analysis; PNN = Probabilistic neural network; RBFNN 
= Radial basis function neural networks; SNV = Standard normal variate; SIMCA = Soft independent modelling of class analogy; SVMC 
= Support vector machines classification.  
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Table 2 

Some quantitative study of food and agro-products adulteration 
# Source Objective 

(Sample 
number) 

Adulterant 
material 

Range of 
spectral 

(nm) 

The best of Prediction 
results Pre-treatment Algorithm 

1 (Ndlovu et al., 
2021a) 

Green 
banana flour 
(72) 

Wheat flour 400 – 
2500 

SNV + Baseline PLSR RPD = 3.9 

2 (Ndlovu et al., 
2021b) 

Green 
banana flour 
(66) 

Wheat flour 400 – 
2500 

2nd dev + Detrend PLSR RPD = 6.24 

3 (Ayvaz et al., 
2021b) 

Einkorn flour 
(64) 

Wheat flour 1000 – 
2500 

MN + MSC + 1st 
dev 

PLSR RPD=19.3 

4 (Santos et al., 
2021) 

Cocoa solids 
(110) 

Cocoa solids content 1100 – 
2500 

SNV PLSR RPD = 31.09 

2500 – 
16667 

RPD = 17.28 

5 (Valinger et al., 
2021b) 

Acacia honey 
(135) 

Fructose corn syrup 325 – 900; 
904 – 
1699 

Raw PLSR RPD = 3.32 

6 (Wongsaipun et 
al., 2021) 

Thai Jasmine 
Rice (423) 

3 type rice 400 – 
2498 

Normalization PLSR RMSEP = 2.6; 
R2p = 0.98 

7 (Castro et al., 
2021) 

Saffron (38) Onion, Calendula, 
Pomegranate and 
Turmeric 

1000 – 
2500 

2nd dev SG + 
SNV  

MCR-ALS RMSEP = 0.8 
– 2.3 

8 (Liu et al., 2021) Infant 
formula (200) 

Hydrolyzed leather 
protein and melamine 

900 – 
1700 

1st dev CNN R2p=0.96 – 
0.99 

9 (Aykas and 
Menevseoglu, 
2021) 

Powdered 
Pistachio 
(19) 

Powdered green pea 
and peanut 

2500 – 
15385 

2nd dev SG + 
Smoothing 

PLSR rval = 0.99 

1351 – 
2551 

rval = 0.99 

10 (Masithoh et al., 
2021) 

Arenga 
pinnata 
sugar (187) 

Coconut sugar 1000 – 
2500 

MSC PLSR RMSEP = 
12.42 

2500 – 
15385 

Normalization RMSEP = 
6.95 

11 (Genis et al., 
2021) 

Pistachio nut 
(143) 

Green pea and 
spinach nut 

908 – 
1695 

Raw PLSR RMSEP = 
4.69 – 7.87 

12 (Silva et al., 2020) Ground meat 
chicken (150) 

Beef, pork 908 – 
1676 

1st dev SG + 
MSC 

SVMR RMSEP = 3.5 
– 4.7  

13 (Yang et al., 
2020) 

Manuka 
honey (93) 

Five different syrups 400 – 
2500 
1100 – 
2500 

2nd dev SG PLSR RMSEP = 
3.61 

14 (Rukundo et al., 
2020) 

Dried 
turmeric 
powder (120) 

Metanil yellow 780 – 
2500 

1st dev SG PLSR RPD = 10.3 

15 (Uysal and 
Boyaci, 2020) 

Liquid egg 
(100) 

Water  1000 – 
2500 

Baseline, 
autoscale, 
smoothing, 1st 
dev SG 

PCR RMSECV = 
0.8 – 0.74 

2500 – 
25000 

PCR RMSECV = 
0.12 – 17.4 

16 (Ndlovu et al., 
2019) 

Unripe 
banana flour 
(82) 

Wheat flour 447– 1005 2nd dev SG PLSR RPD = 12.02 

17 (Kar et al., 2019) Turmeric 
powder (200) 

Corn starch 1000 – 
2500 

SNV + 1st dev SG PLSR RMSEP = 
0.26; R2p = 
0.99  

 
18 

(Pereira et al., 
2019) 

Butter oil (33) Soybean oil 833 – 
2500 

Raw PLSR RPD = 21.68 

2500 – 
25000 

RPD = 12.27 

 
19 

(Yasmin et al., 
2019) 

Cinnamon 
Powder (195) 

Lower quality 
cinnamon Powder 

1000 – 
2500 

2nd dev SG PLSR R2p = 0.97;  
RMSEP = 2.2 

2857 – 
15385 

R2p = 0.96;  
RMSEP = 2.5 

20 (Lukacs et al., 
2018) 

Whey protein 
powder (279) 

Urea, L-taurine, L-
histidine 

800 – 
2750 

Smoothing, SNV, 
2nd dev SG 

PLSR R2p > 0.98 

21 (Da Silva Dias et 
al., 2018) 

Raw milk 
(50) 

Water 1200, 
1450, 
1530,  

Raw MLR R2
p = 0.96,  

RMSEP = 
0.018 

22 (Picouet et al., 
2018) 

Sunflower oil 
(138) 

Mineral oil 1000 – 
2200 

Baseline, MSC, 
SNV 

PLSR RMSEP = 
0.23 – 1.26 

23 (Kar et al., 2018) Turmeric 
Powder (248) 

Metanil yellow 1000 – 
2500 

1st dev SG PLSR R2p = 0.91 

24 (Correia et al., 
2018) 

Arabica 
coffee (125) 

Robusta coffee, corn, 
peels, and sticks 

908 – 
1676  

1st dev SG PLSR RPD = 64.23 
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# Source Objective 
(Sample 
number) 

Adulterant 
material 

Range of 
spectral 

(nm) 

The best of Prediction 
results Pre-treatment Algorithm 

25 (Liu and Zhou, 
2017) 

Apple juice 
(31) 

Water 830 – 
2490 

MSC SPA-PSO-
PLS 

R2p = 0.99;  
RMSEP = 
0.063 

26 (Bázár et al., 
2016) 

Honey (492) High fructose corn 
syrup 

1100 – 
2500 

Smoothing + SNV 
+ 2nd dev SG 

PLSR R2cv = 0.987; 
RMSECV = 
1.48 

27 (Dvorak et al., 
2016) 

Goat milk for 
cheeses (48) 

Cow's milk 1000 – 
2500 

Raw PLSR R2cv = 0.783 

28 (Winkler-Moser et 
al., 2015) 

Coffea 
arabica (84) 

Corn 400 – 
2500 

1st dev SG PLSR R2cv = 0.974 

29 (Kumaravelu and 
Gopal, 2015) 

Honey (160) Jaggery 400 – 
2500 

Smoothing + SNV PLSR R2
p = 0.99 

 (Mouazen and Al-
Walaan, 2014) 

Honey (345) Glucose syrup 305 – 
2200 

SNV + 1st dev SG 
+ Smoothing 

PLSR R2p = 0.78,  
RPD = 2.06 

30 
31 

(Lohumi et al., 
2014) 

Onion 
powder (180) 

Corn starch 1000 – 
2500 

SNV PLSR R2p = 0.90 

2500 – 
15385  

R2p = 0.98 

32 (Vichasilp and 
Poungchompu, 
2014) 

Beef and 
chicken 
Meatballs 
(140) 

Pork meat 1000 – 
2500 

Raw PLSR R2v = 0.88 – 
0.83 

 (Wang et al., 
2014) 

Oat flour 
(220) 

Wheat flour 833 – 
2500 

2nd dev SG PLSR RMSEP = 
1.975 

33 
34 

(Santos et al., 
2013) 

Bovine milk 
(744; 372 – 
837) 

Tap water, whey, 
synthetic milk, 
synthetic urine, urea, 
and hydrogen 
peroxide 

1600 – 
2400 

Raw PLSR R2v = 0.92  

2500 – 
15385 

R2v = 0.92 – 
0.98 

35 (Öztürk et al., 
2010) 

Olive oil 
(160) 

Soybean, cotton, 
corn, canola and 
sunflower oils 

1000 – 
2500 

Raw GILS SEP = 2.93 – 
5.86 rv = 0.90 
– 0.99 

36 (Mishra et al., 
2010) 

Honey (56) Jaggery syrup 1380 – 
1960  

Raw PLSR R2v = 0.66 

37 (Pizarro et al., 
2007) 

Arabica 
coffee 
powder (191) 

Robusta coffee 
powder 

1100 – 
2500 

1st dev SG + 
OWAVEC 

PLSR R2p = 1 

38 (Özdemir and 
Öztürk, 2007) 

Olive oil (52) Sunflower and corn oil 1000 – 
2500 

Raw GILS R2p = 0.99 

39 (Gayo and Hale, 
2007) 

Atlantic blue 
crabmeat 
(110) 

Blue swimmer 
crabmeat 

400 – 
2498 

1st dev SG PLSR R2p = 0.98  

40 (Cocchi et al., 
2006) 

Durum wheat 
flour (58) 

Bread wheat flour 400 – 
2498 

SNV PLSR RMSEP = 
0.38 

41 (Gayo et al., 
2006) 

Crab meat 
(66) 

Surimi-based imitation 
crab meat 

400 – 
2498 

1st dev SG PCR R2p = 0.99; 
SEP = 0.24 

42 (Jha and 
Matsuoka, 2004) 

Cow Milk 
(125) 

Urea, NaOH, Oil, 
shampoo 

700 – 
1124 

MSC MLR R2v = 0.58 – 
0.98 

43 (Uddin and 
Okazaki, 2004) 

Fresh (162) Frozen-thawed fish 1920 – 
2350 

2nd dev SG MLR R2c = 0.95 – 
0.99 

44 (Maraboli et al., 
2002) 

Milk powder 
(155) 

Vegetable proteins 1100–
2500 

1st dev SG MLR R2p = 0.993 

45 (Rodriguez-
Saona et al., 
2001) 

Fruit juices 
(60) 

Sugars 1000 – 
2500 

2nd dev SG PLSR R2p = 0.99 

46 (Wesley et al., 
1995) 

Olive oil 
(310) 

Corn oil, sunflower oil, 
raw olive residue oil 

800 – 
2500 

1st dev SG PLSR rv = 0.8 

CNN = Convolutional neural network; GILS = Genetic inverse least squares; MCR-ALS = Multivariate curve resolution – alternating 
least squares; MLR = Multiple linear regression; PCR = Principal component regression; PLSR = Partial least squares regression; 
SVMR = Support vector machines regression 

 
Table 3 

Combine qualitative and quantitative analysis of food and agro-products adulteration 
# Source Objective 

(Sample 
number) 

Adulterant 
material 

Range of 
spectral 

(nm) 

The best of Prediction 
results Pre-treatment Algorithm 

1 (Kazazić et al., 
2021) 

Butter (36) Pork fat, Margarine 900 – 
1700 

Raw PLS-DA Accuracy = 
100% 

PLSR RPD = 5.24 – 
37.51 

2 (Amirvaresi et al., 
2021) 

Saffron (120) C. sativus style, 
safflower, rubia and 
calendula 

833 – 
2500 

MN + 2nd dev PLS-DA Accuracy = 
95.4 –100% 

PLSR R2 = 0.95 – 
0.99 
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# Source Objective 
(Sample 
number) 

Adulterant 
material 

Range of 
spectral 

(nm) 

The best of Prediction 
results Pre-treatment Algorithm 

2500 – 
25000 

PLS-DA Accuracy = 
81.3 – 100% 

3 (Hosseini et al., 
2021) 

Sterilized milk 
(11) 

Sodium dodecyl 
sulphate 

769 – 
2500 

MN + SD scaled  PLS-DA R2cv = 0.98 
2nd dev+SNV PLSR R2p = 0.96 

2500 – 
16667 

Smoothing SG PLS-DA R2cv = 0.94 
PLSR R2p = 0.98 

4 (Du et al., 2021a) Camellia oil 
(130) 

Corn oil, rapeseed 
oil and sunflower oil 

1000 – 
2381 

1st dev SG DA Accuracy = 
96.7% 

SNV + 1st dev 
SG 

PLSR RMSEP = 4.98 

5 (Le Nguyen Doan 
et al., 2021) 

Green tea (475) Sugar and glutinous 
rice flour 

900 – 
1700 

SNV SVMC Accuracy = 
97.47% 

SVMR rp > 0.94 
6 (Vitalis et al., 

2020) 
Tomato paste 
(57) 

Ground paprika 
seed, Corn starch, 
Sucrose, Salt 

740 – 
1700 

1st dev SG + 
MSC 

LDA Precision = 
78.64% –
97.65%  

PLSR RMSECV = 
0.23 – 0.89 

7 (Temizkan et al., 
2020a) 

Yoghurt (100) Several fat-free 
UHT 

1000 – 
2500 

MN + MSC SIMCA Specificity = 
100% 

MN + 1st dev SG  
+ MSC 

PLSR RPD = 4.35 

2500 – 
15385 

MN + 2nd dev SG SIMCA Specificity = 
100% 

PLSR RPD = 4.65 
8 (Mabood et al., 

2020) 
Fresh milk 
samples (162) 

Urea 1000 – 
2500 

Baseline PLS-DA R2 = 0.97 
PLSR R2 = 0.98 

9 (Leng et al., 
2020) 

Minced beef 
(150) 

Pork and Duck meat 800 – 
1852 

Raw DA Accuracy = 
91.5 –100% 

Raw PLSR RMSEP = 7.27 
– 9.27 

10 (Pereira et al., 
2020) 

Goat milk (112) Cow milk 1000 – 
2500 

Raw PLS-DA Accuracy = 
100% 

Moving mean + 
Baseline offset 

SPA RPD = 10 

11 (Weng et al., 
2020) 

Minced beef 
(240) 

Beef loin, beef 
heart, beef tallow, 
and pork loin 

1000 – 
2500 

SG smoothing CNN Accuracy = 
99% 

CARS RF RMSEP = 
2.145 

12 (Biancolillo et al., 
2020) 

Egg pasta 
(100) 

Turmeric 1000 – 
2500 

MSC PLS-DA Precision = 
97.5% 

SNV PLSR RMSEP = 0.11 
13 (Oliveira et al., 

2020) 
Paprika powder 
(315) 

Potato starch, 
acacia gum and 
annatto 

900 – 
1700 

Auto-scaling PLS-DA Specificity = 
90% 

Smoothing + 1st 
dev SG 

PLSR RMSEP = 0.95 
– 1.74 

14 (Kene Ejeahalaka 
and On, 2020) 

Fat-filled milk 
powder (150) 

Melamine, urea and 
4 different vegetable 
oils 

850 – 
2500 

2nd dev SG + 
EMSC 

SIMCA Sensitivity = 
85% 

PLSR R2p = 0.96 
15 (Lima et al., 

2020) 
Black pepper 
and Cumin 
(130) 

Starch cassava, 
corn flour 

1100 – 
2500 

Raw O-PLS-DA  Specificity = 
100% 

PLSR RPD = 2.24 – 
7.01 

16 (Aliaño-González 
et al., 2019) 

Honey (68) Inverted sugar, rice 
syrup, brown cane 
sugar and fructose 
syrup 

400 – 
2500 

Raw LDA Precision = 
100% 

PLSR RMSEP = 3.89 

17 (Zaukuu et al., 
2019) 

Paprika powder 
(54) 

Corn flour 750 – 
1700 

Smoothing + 
MSC 

LDA Accuracy = 
95.55% 

PLSR R2cv = 0.98; 
RMSECV = 
1.71 

18 (Ferreiro-
González et al., 
2018) 

Honey (22) High fructose corn 
syrup 

400 – 
2500 

Raw PCA-LDA Accuracy = 
100% 

PLSR R2p = 0.99, 
RMSEP = 4.71 

19 (Quelal-
Vásconez et al., 
2018) 

Cocoa powder 
(234) 

Carob flour 1100 – 
2500 

2nd dev SG + 
OSC 

PLS-DA Accuracy = 
100% 

OSC PLSR R2p = 0.97, 
RMSEP = 3.2 

20 (Mabood et al., 
2018) 

Fruit juice (198) Saccharin 1000 – 
2500 

Baseline 
correction + 
Smoothing SG 

PLS-DA R2cv = 0.98 
PLSR R2p = 0.97 

21 (Rady and 
Adedeji, 2018) 

Minced beef 
(1697) 

Another beef Normalization + 
1st dev SG 

SVMC Precision = 
100% 
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# Source Objective 
(Sample 
number) 

Adulterant 
material 

Range of 
spectral 

(nm) 

The best of Prediction 
results Pre-treatment Algorithm 

200 – 
1100, 900 
– 1700 

PLSR RPD = 1.64 – 
1.98 

22 (Mabood et al., 
2017b) 

Camel milk (54) Cow milk 1000 – 
2500 

1st dev SG PLS-DA R2 = 0.97 
PLSR R2 = 0.92;  

RMSEP = 1.32 
23 (Mabood et al., 

2017a) 
Camel milk (54) Goat milk 700 – 

2500 
Baseline 
correction + 
Smoothing SG 

PLS-DA R2 = 0.97 
PLSR R2 = 0.94 

24 (Liu et al., 2017) Honey (360) High-fructose corn 
syrup, maltose 
syrup 

1000 – 
2500 

Norris + 2nd dev PLS-DA Accuracy = 
86.3% – 96.1% 

Norris + 1st dev PLSR R2p = 0.9 – 
0.98 

25 (Liu and Zhou, 
2017) 

Infant formula 
(170) 

Hydrolysed leather 
protein powder 

900 – 
1700 

MSC + 1st dev 
SG 

SIMCA Accuracy = 
98.21% 

SVMR RPD = 7.42 
26 (Alamprese et al., 

2016) 
Minced beef 
meat (198) 

Turkey meat 800 – 
2667 

SNV PLSDA Sensitivity = 
0.84 

PLSR R2p = 0.884; 
RMSEP = 10.8 

27 (Capuano et al., 
2015) 

Skim milk 
powder (384) 

Whey, starch, 
maltodextrin,  

400 – 
2498 

SNV + 2nd dev 
SG + mean 
centering 

SIMCA Accuracy = 
82.42% 

PLSR R2
p = 0.93 – 

0.98 
28 (Kuswandi et al., 

2015) 
Beef meatball 
(162) 

Pork meat 850 – 
2000 

1st dev SG LDA Accuracy = 
100% 

PLSR R2
p = 0.97 

29 (Luqing et al., 
2015) 

Roasted green 
tea (150) 

Sugar and glucose 
syrup 

800 – 
2500 

SLB, Min/max PLS-DA Accuracy = 96 
– 100% 

SNV PLSR R2p = 0.99 
30 (Teye et al., 

2014) 
Fermented 
cocoa beans 
(132) 

Unfermented cocoa 
beans 

1000 – 
2500  

SNV SVMC Accuracy = 
100% 

Selection 
wavelength 
using Si-PLS 

PLSR rp = 0.98; 
RMSEP = 1.68  

31 (Alamprese et al., 
2013) 

Minced beef 
(242) 

Turkey meat 800 – 
2667 

SNV LDA Accuracy = 
71.2% 

PLSR R2 = 98.13 
32 (Morsy and Sun, 

2013) 
Minced beef 
(191) 

Pork, fat trimming 
and offal 

400 – 
2500 

2nd dev SG, 
SNV, Moving 
average 

PLS-DA Accuracy = 
100%  

PLSR R2p = 0.82 – 
0.96 

33 (Zhao et al., 
2013) 

Beefburger 
(164) 

Offal 850 – 
1098 

2nd dev SG, 
MSC,  

PLS-DA Accuracy = 
88.9 – 95.5% 

Raw PLSR RPD = 1.5 – 
2.3 

34 (Liu et al., 2010) Fishmeal (276) Melamine 833 – 
2500 

2nd dev SG + 
Smoothing 

PLS-DA Accuracy = 
99.5% 

1st dev SG + 
Smoothing + 
SNV 

PLSR R2p = 0.98 – 
0.99; RMSEP 
=  0.38 – 0.24 

35 (Kasemsumran et 
al., 2007) 

Cow milk (90) Water and Whey 1100 – 
2500 

MSC + 2nd dev 
SG 

PLS-DA Accuracy = 
86.73  – 100% 

MSC PLSR R2 = 0.99 
36 (Kelly et al., 

2006) 
Honey (179) Beet invert syrup 

and High fructose 
corn syrup 

1100 – 
2498 

Raw SIMCA Accuracy = 
100% 

MSC, 2nd dev 
SG 

PLSR R2 = 0.72 – 
0.79 

37 (León et al., 
2005) 

Apple Juice 
(450) 

Fructose, glucose, 
sucrose 

400 – 
2498 

MSC PLS-DA Accuracy = 86 
– 100% 

PLSR r = 0.77 – 0.94 
38 (Downey and 

Kelly, 2004) 
Strawberry and 
raspberry 
purees (305) 

Apples purees 400 – 
2498 

SNV + 2nd dev 
SG 

SIMCA Accuracy = 
75.1–95.1% 

PLSR rcv = 0.90 
 
39 

(Paradkar et al., 
2002b) 

Maple syrup 
(272) 

Cane and beet 
invert syrups, cane 
and beet sugar 
solutions 

1100 – 
1660  

1st dev SG PLS-DA Accuracy = 
98.39% 

PLSR R2v = 0.83 – 
0.98  

2500 – 
25000 

PLS-DA Accuracy = 
100% 

PLSR R2v = 0.99 
40 (Contal et al., 

2002) 
Strawberry and 
raspberry 
purees (344) 

Apples purees 400 – 
2500  

Raw SIMCA Accuracy = 
79.07 – 94.77  

PLSR rv = 0.98 – 
0.99  
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# Source Objective 
(Sample 
number) 

Adulterant 
material 

Range of 
spectral 

(nm) 

The best of Prediction 
results Pre-treatment Algorithm 

41 (Paradkar et al., 
2002a) 

Maple syrup 
(54) 

Corn syrups 2500 – 
25000 

Raw PCA-DA Accuracy = 
96.20 

PLSR R2p = 0.98 
42 (Murray et al., 

2001) 
Fish meal (136) Meat and bone meal 1100 – 

2500 
MSC PLS-DA Accuracy = 

98.55% 
2nd dv SG + SNV PLSR R2 = 0.94 

43 (Ding and Xu, 
2000) 

Beef 
hamburgers 
(194) 

Mutton, pork, skim 
milk powder, or 
wheat flour 

400 – 
2500 

SNV + 2nd dev 
SG 

k-NN Accuracy = 
92.7% 

PLSR R2v = 0.74 – 1 
44 (Thyholt et al., 

1997) 
Beef (350) Pork, mutton 780 – 

2500 
1st dev SG + 
Smoothing 

QDA Accuracy = 
98.53 – 100% 

PLSR r = 0.68 – 0.94 

O-PLS-DA = Orthogonal partial least squares – discriminant analysis; PCA-LDA = Principal component analysis – linear discriminant 
analysis; QDA = Quadratic – discriminant analysis; RF = Random Forest; SPA = Successive projections algorithm 

 
 

Adulteration in livestock products 

Adulteration of livestock products occurs often and considerably threatens human health and safety 

when other substances are added for specific purposes. Liu et al. (2021) reported machine learning in the form 

of a CNN architecture in tandem with near infrared spectroscopy data to predict hydrolysed leather protein and 

melamine in infant formula. Their result can predict adulterated and unadulterated milk R2 up to 0.99%. 

Furthermore, Mabood also developed a method using near infrared spectroscopy in tandem with multivariate 

analysis to detect the mixture of camel milk with goat milk. They used PLS-DA to authenticate pure and 

adulterated milk and PLS to quantify adulteration levels with RMSE of 0.08% and 1.10%, respectively. 

Unfortunately, the model of this study still found inconsistent accuracy at the adulteration limit of 0.5% for 

authentication and 2% for quantification. 

Even more amazing, Karunathilaka et al. (2018) proposed a methodology to rapidly evaluate commercial 

milk powders to determine if they are original or may include known or unknown adulterants using SIMCA 

classification algorithm. They claim that the classification models produced 100% sensitivities using benchtop 

spectrometers to detect milk powder fraud and are not limited only to specific types of known adulterants. This 

shows that using near infrared spectroscopy with the appropriate processing method will provide very precise 

and fast evaluation results for fraudulent food and agro-products. 

Another issue in the livestock product is meat adulteration. Unscrupulous traders adulterate meat 

products with another adulterant (cheaper meat, animal offal, spoiled meat, and non-meat chemical synthetic 

materials) for profiteering purposes. Hence, Zhao et al. (2019) report the VIS-NIR technique to predict beef 

adulteration with spoiled beef using the LS-SVM algorithm. They declare that applying LS-SVM in the spectral 

range of 496 to 1000 nm can predict spoiled beef with an error prediction of approximately 5.67%. Weng et al. 

[52] conducted another research on the detection of adulteration meat using VIS-NIR spectroscopy was 

conducted by Weng et al. (2020) with minced beef samples. They used a spectral range of 350–2500 nm and 

claimed to detect minced beef mixed with pork and beef heart with error predictions of approximately 2.145% 

and 2.758%, respectively. These studies show that the application of VIS-NIR spectroscopy coupled with 

chemometrics can be powerful for the fast and accurate detection of adulterated livestock products. 

 

Adulteration in flour products 

The detection of fraud in flour products ingredients has become an even more important topic since flour 

products, such as bread and other bakery products, are widely consumed as primary foods. Many consumers 

lost trust in the food they were buying and the food industry identified that more rapid measures in terms of the 

evaluation of its product had to be put in place. Frequently adulteration is achieved in high-value food items 

and those that come through complex supply chains. The flour product that comes from food is likely more 

highly vulnerable to adulteration due to the complexity of the characteristics, and it is widely used for products 

such as bread. To address this, cutting-edge methods must be easy to use, fast and inexpensive, especially 

for the flour industry. The most interesting method today is the application of food fingerprinting as a detection 

method by IR technology. At least in the last five years, durum wheat flour, banana flour, einkorn flour, wheat 

flour, barley flour and cassava flour were among the flour products found to be the most commonly adulterated 

and the researchers have studied how to detect it using IR spectroscopy technology.  

In old studies, Cocchi et al. (2006) ever studied the use of near infrared spectroscopy to quantify the 

adulteration level of durum wheat flour using the PLS algorithm. The authors claim near infrared spectroscopy 
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data can show durum wheat flour adulteration using SNV pre-treatment. In another study by Ndlovu et al. 

(2019) considered VIS-NIR spectroscopy to detect adulteration of unripe banana flour with wheat flour.  

They found that the PCA model could successfully separate samples of pure and contaminated banana 

flour. PLSR model also could quantify the level of adulteration. Both results of this study indicate that NIR and 

VIS-NIR spectroscopy could monitor the quality of flour in retail markets for the purpose of product verification. 

In a recent study by Ayvaz et al. (2021a), near infrared spectroscopy is suggested to detect adulteration 

of einkorn flour with wheat flour and presents a correlation coefficient of 0.94 to 0.99. The lowest correlation 

coefficient is found in the adulteration ratio of wheat flour less than 7% (w/w). IR spectroscopy was also used 

by Aykas and Menevseoglu (2021) to detect the mixing of powdered pistachio with powdered green pea and 

peanut. Infrared spectroscopy can be correctly predicted with a coefficient correlation of about 0.99. 

Furthermore, Tao published a study on the detection of eight varieties of adulterants of cassava flour in 

wheat flour using micro-IR spectroscopy in the range of 1150–2150 nm. The classification of this study finding 

that the adulteration of wheat flour with cassava flour achieved 100% accuracy, yet the level adulteration of 

wheat flour with cassava flour (5% to 40% adulteration) only presented correct classification rates between 

56.25% and 100%. The last but not least, study reported by Xu et al. (2013c) used near infrared spectroscopy 

in the 1000–2500 nm range to classify Chinese glutinous rice flour from extraneous adulterants and unwanted 

variations. This study found an adulteration specificity of 0.92 with one-class partial least squares algorithms. 

 

Adulteration in liquid agro-product 

Adulteration of liquid agro-products is valued in the same way as pure products, and there is a need for 

fast, easy, and precise analytical methods to assess their characteristics and originality. Popular liquid agro-

products obtained in the form of naturally sweet and viscous products are honey, fruit juices, and vegetable 

oil.  

According to Tan et al. (2021) and Contal, L. (2002), the chemical content of wild honey is correlated 

with the season, geographical region, storage method and harvesting method, which makes it very difficult to 

compare other types of honey. It also makes honey very susceptible to adulteration and is valued similarly to 

pure honey. Evaluation the feasibility of near infrared spectroscopy technology in the rapid detection and 

classification of adulteration of honey has been study by some researcher. Kelly et al. (2006) detect adulterated 

honey from beet invert syrup and high fructose corn syrup using near infrared spectroscopy (1100–2498 nm) 

with an accuracy between 9.0 and 11.9 (RMSE-CV). Furthermore, the same study was also conducted by 

Bázár et al. (2016) to detect corn syrup additives in honey using near infrared spectroscopy in the wavelength 

ranges 1300–1800 nm and reached an accuracy better than the previous study (RMSE-CV of 1.48). Besides, 

Ferreiro-González et al. (2018) used VIS-NIR spectroscopy (400–2500 nm) to predict honey adulteration with 

fructose-rich corn syrup and obtained an accuracy not yet better than Bázár et al. (2016) (RMSE-CV of 4.71). 

The most recent to conduct a similar study is Valinger et al. (2021a), which evaluated the feasibility of near 

infrared spectroscopy technology in the rapid detection of adulteration of honey with corn syrup. Unfortunately, 

the results indicate that the near infrared spectroscopy of adulterated honey can be modelled to detect fraud 

with an accuracy that is not yet better than the previous study. However, the interesting one in this study is 

that the adulteration of honey with water reported cannot be predicted with precision.  

Fruit juice becomes a liquid food agro-product of the most common adulteration with artificial 

sweeteners, dilution with water, and fraud with low-quality or less-expensive fruit juice. Therefore, some 

researchers have developed a fast and low-cost method for inspecting fruit juice adulteration or dilution. In one 

study, Mabood et al. (2018) reported applications of near infrared spectroscopy (860–2500 nm) for 

classification of adulteration and non-adulteration in commercial fruit juices with precision between 0.067 to 

0.169 (RMSE). 

 

Adulteration in herbs and spices 

Spices are highly valued agro-products because they are used in many in the world to flavour and 

preserve processed food. However, herbs and spices are extremely vulnerable to commercial gain motivated 

fraud including black pepper, garlic, saffron, and oregano. 

Spices are high-value food components in weight units because they have desirable flavour 

characteristics and, therefore, are economically profitable targets for adulteration. To address this problem, 

Wilde and Galvin-King et al. (2021b) conducted a study on the feasibility of near infrared and infrared 

spectroscopy to detect adulteration in black pepper and garlic of adulterants. The developed model is claimed 
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to classify black pepper from its adulteration with a percentage of correct between 92% to 100%. Investigation 

of garlic adulteration detection using parameter validation in the form of fit measurement has an accuracy in 

the range of 98.5% to 99.4%.  

Meanwhile, Amirvaresi et al. (2021) applied infrared spectroscopy to authentication saffron adulteration 

with accuracy classification between 81.3 to 100%. Unfortunately, detection limitations are only in the range of 

1.0–3.1% (w/w) for each adulterant. Work has also been carried out by Galvin-King et al. (2020a), who have 

utilized infrared spectroscopy to identify the presence of adulterate powdered paprika with Varying seed or 

pod. Their model claims to predict component adulteration on powdered paprika with a coefficient of 

determination of about 0.94. 

 

FUTURE PERSPECTIVES 

Current studies indicate the potential of near infrared and infrared spectroscopy approaches for 

detecting the adulteration of food and agro-products. Such a breakthrough would undoubtedly support the 

further implementation of near infrared and infrared spectroscopy-based quality evaluation. The availability of 

multiple data sources and the fusion of multi-origin data affords a perspective for future research. The fusion 

of UV-VIS, near infrared, and infrared spectroscopy is the process of combining some spectral information to 

improve data quality and produce a high quality representation model (Valinger et al., 2021a). Future studies 

may use sample adulteration from a different origin, variety, storage temperature, or even shelf-life when 

developing a model. With the increasing number and high quality of accessible samples, the future perspective 

for detecting the adulteration of food and agro-products possibly focuses on near infrared and infrared 

spectroscopy tandem with machine learning. The main advantage of the machine learning approach is 

decreasing the dependence on human domain knowledge by end-to-end analysis and the improved precision 

and generalizability. 

 

CONCLUSIONS 

In this paper, the feasibility of applying a non-destructive for detecting and discriminating food 

adulteration and agro-products is based on near infrared and infrared spectroscopy and various types of data 

analysis have been represented. Besides the non-destructive, the primary advantages of the analytical method 

are fast and economical, directing to cost-effective quality assurance of detecting such a key worldwide food 

and agro-products adulteration. Actually, once the chemometric model has been correctly calibrated, the time 

elapsed from the scanning of IR spectroscopy on the samples and their subsequent classification would only 

need a few seconds. Therefore, this approach could represent a concrete and effective answer to the need, 

claimed by industrial and agro-product producers, as well as by the Food Control Authority, for affordable, fast, 

and efficient technologies to evaluate food quality and authenticity. Furthermore, the results of the variable 

selection establish the basis for developing portable and handheld infrared spectroscopy, customized for the 

detection and discrimination of adulteration food and agro-products directly “in situ” to ensure authenticity and 

counteract adulteration. Last but not least, the promising results performed by the numerous laboratory model 

validation indicate the potential transferability of a near infrared and infrared spectroscopy-based method to 

various production food and agro-product sites.  

In the future, although optimistic results were acquired in an investigation for fraud detection for food 

and agro-products today, it must be pointed out that the optical for near-infrared and infrared spectroscopy 

technologies applied remain pricey so far. To implement routine analyses in some food and agro-products, it 

is necessary to develop low-cost infrared optical technologies and have the same accuracy as those currently 

available. 
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