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ABSTRACT 

In hyperspectral remote sensing images, desert steppe vegetation, bare soil, and rat holes appear as micro-

patches. The spectral feature analysis of micro-patches is the basis for identification and classification and 

also the basis for quantitative remote sensing monitoring of ground objects. Taking the micro-patches of desert 

steppe in Inner Mongolia as the research object, the spectral reflectance of different micro-patches was 

extracted, and a variety of vegetation indices were calculated respectively. The spectral characteristics of 

different micro-patches were quantitatively analyzed, and the micro-patches spectral analysis method was 

proposed to realize the classification of high-resolution hyperspectral images of surface micro-plaques of 

desert steppe. The results showed that: (1) There are pronounced differences in the spectral reflectance of 

the three types of surface micro-patches. The vegetation has apparent characteristics in the green wave 

reflection peak and the red wave absorption valley. The spectral reflectance of the bare soil is higher than that 

of the mouse hole, and the two have been increasing. The trend is increasing slowly; (2) The proposal and 

application of the MSA(micro-patch spectral analysis) index can effectively realize the identification and 

classification of surface micropatches, and the Kappa coefficient has reached 0.906 through confusion matrix 

verification. The above spectral analysis method realizes the classification and identification of complex ground 

objects using near-ground remote sensing images. It provides new ideas and methods for accurate quantitative 

statistics of desert grassland ecological information. 

 

摘要 

高光谱遥感图像中荒漠草原植被、裸土、鼠洞均表现为微斑块，对微斑块进行光谱特征分析是识别分类的基础，同时也是定

量遥感监测地物的基础。以内蒙古荒漠草原微斑块为研究对象，提取不同微斑块的光谱反射率，分别进行多种植被指数运算，

定量分析不同微斑块的光谱特征，并提出微斑块光谱分析法，实现了对采集的高分辨率的荒漠草原地表微斑块高光谱图像分

类研究。结果表明：（1）三类地表微斑块光谱反射率存在明显差异，植被在绿波反射峰与红波吸收谷表现特征明显，裸土的

光谱反射率高于鼠洞且二者一直呈上升趋势缓慢增长；（2）MSA指数的提出与应用有效地实现了地表微斑块的识别与分类，

经混淆矩阵验证 Kappa系数达到 0.906。上述光谱分析方法实现了利用近地面遥感图像对复杂地物的分类与识别，为荒漠草

原生态信息的精确量化统计提供了新的思路与手段。 

 

 

INTRODUCTION 

The grassland ecosystem is continuously degraded by natural and human factors, manifested as low 

vegetation community, reduced population number, severe loss of soil organic matter, and apparent 

salinization trend (Lyu et al, 2020, Wang et al, 2020). The traditional monitoring of grassland degradation 

through artificial field investigation, the proportion of degraded indicator grass species in the sample and the 

hole coefficient in the area, were calculated. The grassland degradation grade was evaluated according to the 

grassland degradation standard, and the statistical cycle was time-consuming and laborious. With the 

development of science and technology, satellite remote sensing is widely used in the ground investigation 

(Sun et al, 2019). Donovan, (2021), obtained hyperspectral images from the EO-1 Hyperion satellite and 

realized the detection of different degrees of forest leaves based on the vegetation index. Based on Sentinel-

1, Sentinel-2 satellite data, and digital soil images, the relationship between soil fertilizer and irrigated wheat 

yield in Nepal was obtained, and an accurate soil nutrient management plan was proposed (Campolo et al, 

2021).  
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Tomáš Bucha, (2021), used radar and optical multi-temporal data to establish a comprehensive 

prediction model through multiple regression and realized the aboveground biomass estimation of abandoned 

agricultural land in the Western Carpathians. Based on satellite remote sensing image of aboveground 

biomass ( AGB ), the distribution map of grazing intensity ( ungrazed, light grazed, moderate grazed and heavy 

grazed ) in Xilinguole grassland was drawn by multi-spectral reflectance simulation (Li et al, 2016). Laiskhanov, 

(2021) compiled a map of landscape drying and soil salinization by comparing the satellite data of the Ili River 

delta in 1979 and 2019. In summary, satellite remote sensing has realized the coverage and biomass 

calculation of typical grassland vegetation and agricultural land, but studies based on desert grassland are 

rarely reported. 

With the acceleration of grassland ecosystem degradation, higher requirements have been put forward 

for high-precision and real-time dynamic monitoring of grassland degradation (Yan et al, 2019). The existing 

vegetation index cannot realize the fine division of the surface micropatches of the desert steppe. The spatial 

resolution of satellite remote sensing data is low. At the same time, due to its hardware limitations and the 

complex background environment in the data collection process, “the same thing with different spectrums, 

different things with the same spectrum” appears between different micropatches, which leads to identifying 

confusion during classification. Hyperspectral micropatch sensing data has the advantages of the high 

temporal-spatial resolution, multi-band, and a large amount of information (Zhu et al, 2021, Guo et al, 2018). 

In this study, the hyperspectral data of desert grassland micro-patches were used to analyze the spectral 

characteristics, calculate various vegetation indices, analyze the spectral differences between different micro-

patches, and finally construct the MSA identification and classification model, which is used for the identification 

and classification of hyperspectral remote sensing systems in desert grasslands. It provides a basis for 

statistics, and a new solution for monitoring grassland degradation. 

 

MATERIALS AND METHODS 

Overview of experimental area 

The experiment was carried out in Gegentala Grassland (41.78°N, 111.88°E) in Siziwang Banner, Inner 

Mongolia Autonomous Region. The region is located in Eurasia and belongs to a semi-dry-mid temperate 

monsoon climate. It has high temperature and little rain in summer, cold and dry in winter, low annual average 

precipitation, and extensive evaporation. The unique climatic characteristics and geographical location 

decrease the overall vegetation coverage from southeast to northwest, and the vegetation coverage rate is 

low, with the typical geographical representation of a desert steppe (Gao et al, 2020). 

In the experiment, 50 quadrats with a size of 50 cm × 50 cm including rat holes, were randomly placed 

in a grazing area of 3 km2. To reduce external interference and ensure vertical sunlight, the collection time was 

set from 11:00 to 13:00. The hyperspectral data is recorded in the hyperspectral imager controller. The 

hyperspectral data contains 256 bands, the spectral range covers 400 nm~1000 nm, and the spectral 

resolution is 3.5 nm. The hyperspectral image is shown in the figure 1. 

 
Fig. 1 - Hyperspectral raw data 

 

Micropatch region of interest selection 

The micropatches in desert steppe are nested and interlaced. Three types of micropatches were 

selected for analysis in this study. According to their distribution characteristics and the area proportions of 

various kinds of micropatches in the region, the regions of interest of micropatches were determined according 

to visual interpretation (Table 1). 
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Table 1 

Pixel information contained in the ROI of each micropatch 

Microplaque Type Number of pixels Polygon features Point features 

Vegetation 3392 6/3196 196 

Bare soil 2056 5/1823 233 

Rat hole 752 1/752 0 

 

Micropatch reflectance curve characteristics 

The spectral reflectance curve characteristics of the three types of micropatches are different (Figure 2). 

The background of the rat hole is relatively simple, it appears black under sunlight, and the reflectance to light 

is low on the whole waveband, always lower than 0.05. The reflectivity of visible light in the bare soil increases 

proportionally, and the overall performance is higher than that of the mouse hole. The spectral reflectance of 

vegetation is slightly higher than that of bare soil. At 450 nm~560 nm, vegetation is affected by its high 

chlorophyll content, and the reflectance is higher than that of bare soil, thus forming a prominent reflection 

peak; while at 560 nm~700 nm, the reflectance of vegetation is slightly lower than that of bare soil; in the red 

light region and near-infrared region after 700 nm, the reflectance of vegetation rises sharply and then tends 

to be flat. In this region, the reflectance of vegetation reaches about 0.45, and that of bare soil reaches 0.25. 

 
Fig. 2 - Spectral reflectance curve of each micropatch 

 

Considering that the spectral reflectance jitter of micro-patches in the near-infrared region is relatively 

apparent, to highlight further the spectral characteristics of the three types of micro-patches, the first-order 

derivative calculation is performed on the spectra in the full-band range (Figure 3), and the formula is as follows: 
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Where: ρ'
λi
 represent the first derivative value at band λi, ρ

λi+1
 represents the spectral reflectance at λi+1, 

ρ
λi-1

 represents the spectral reflectance at λi-1，and Δλ represents the number difference of bands. 

The results show that only the vegetation has the prominent ρ red edge, yellow edge, and blue edge 

characteristics; the red edge is located at 711.2 nm, the slope is 0.02348; the yellow edge is located at 562.3 

nm, the slope is -0.00281; the blue edge is located at 510.9 nm, the slope is 0.004837. The second is that the 

blue edge of the bare earth is located at 515.5 nm, and the slope is 0.002454. The first-order spectral 

reflectance of the rat hole is still flat in the visible light range without fluctuation. 

 
Fig. 3 - The first derivative curve of the spectral reflectance of each micro-patch 
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Micropatch vegetation index calculation 

To further analyze the spectral characteristics of micro-patches, the normalized vegetation index (NDVI), 

ratio vegetation index (RVI), soil-adjusted vegetation index (SAVI), and enhanced vegetation index (EVI) were 

calculated according to the distribution characteristics of surface micro-patches in a typical desert steppe. 

NDVI, RVI, and EVI can better divide vegetation and non-vegetation but cannot accurately separate non-

vegetation; SAVI can distinguish between rat holes and bare soil but cannot realize the division of vegetation 

and non-vegetation. The results show that there is vegetation. There is still a specific deviation in the 

recognition and classification accuracy of the index (Zhang et al, 2020). 

 
Fig. 4 - Threshold distribution of different vegetation indices 

 

PROPOSAL FOR MSA INDEX 

Conventional index methods such as NDVI can only achieve the extraction of a single ground object. 

There is a severe overlap between the distribution areas of different micro-patches, which cannot meet the 

classification requirements of surface micro-patches in a desert steppe. Therefore, the MSA index is proposed 

to achieve the fine division of micro-patches. 

 

Data preprocessing 

External factors such as clouds and light easily disturb the data collection process. It is necessary to 

remove the hyperspectral images with uneven exposure and then correct the reflectivity of the standard 

spectral images to eliminate the radiation errors caused by external interference to the hyperspectral images, 

to obtain a standard reflectance spectrum. 

Affected by various factors such as Gaussian noise, stripe noise, and external environment in the 

process of hyperspectral data acquisition, the reflectivity curve of each pixel is relatively chaotic, which leads 

to the loss of a lot of information in the hyperspectral image, reduces the application accuracy of hyperspectral 

images in ground object classification and target pixel detection (Zeng et al, 2019). The existence of noise has 

caused significant fluctuations in the spectral data, resulting in a significant deviation of the actual spectral 

reflectance, which is very unfavorable for the research of ground object classification. Therefore, it is necessary 

to perform mathematical operations on the hyperspectral image’s entire waveband to eliminate the interference 

of the subsequent ground object classification processing.  
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The smooth noise reduction formula is as follows: 

smooth( 1,5)s =          (2) 

Where: ρ represents the spectral curve after processing, s1 represents the spectral curve, and 5 represents 

the weighted coefficient of smooth noise reduction. 

 

Proposal for MSA Index 

The spectral curves of 50 pure pixels of three types of micro-patches in the region of interest are 

respectively selected for mean calculation, and the standard spectral curves of the pure pixels are extracted. 

The formula is as follows: 

1

n

i

i

b

Average_Ref =
n

=

              (3) 

Where: bi is the selected band’s reflectivity and Average_Ref is the average reflectivity, n is taken as 50. 

 

Analysis of the standard spectral curve of the micro-patches (Figure 5) found that the vegetation spectral 

curve showed a slow upward trend in the range of 400 nm~560 nm blue-green light, forming the first reflection 

peak. Due to the high chlorophyll content in the desert steppe vegetation, the carotenoid content is relatively 

low. The absorption is strong in the near-red light band range of 560 nm~680 nm, and the reflectivity shows a 

downward trend. Then in the red light and near-infrared band, the reflectance shows a stronger upward trend, 

and the peak value of the reflectance is close to 0.5. Bare soil and rat holes do not have this prominent feature. 

The rising trend of bare soil in the illumination range of 400 nm~560 nm was similar to that of vegetation, and 

the spectral reflectance increased with the increase of wavelength. The rat hole is flat in the whole range, and 

there is no apparent growth trend. The reflectivity of the three types of micropatches tends to be balanced in 

the near-infrared band. In summary, based on the above differences in spectral characteristics, a surface 

micropatch spectral analysis index (MSA) model is established, and the formula is as follows: 
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Where MSA is the micropatch index, 𝜌𝐺  is the green band, 𝜌𝑁𝐼𝑅 in the near-infrared band, and 𝜌𝑅 is the red 

band. 

 
Fig. 5 - The mean curve of spectral reflectance of each micropatch after denoising 

 

RESULTS AND DISCUSSION 

Classification result 

The MSA index calculation was performed on five micro-patch samples, including mouse holes. To 

reduce the influence of errors caused by the band calculation, this study selected 20 wavelength bands of 

green light, red light, and near-infrared, respectively, for calculation. After the operation, according to the 

distribution of micro-patches in the random quadrat, the proportions of pixels are selected as 5%, 10%, 30%, 

50%, 70%, and 90% as the threshold boundary nodes for threshold statistics (Table 2).  
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Table 2 

Threshold statistics of MSA index 

Data number 
The different pixel threshold percentage 

5% 10% 30% 50% 70% 90% 

R1 0.09265 0.09984 0.11465 0.12467 0.12678 0.14587 

R2 0.09386 0.10328 0.11527 0.12329 0.13583 0.14295 

R3 0.09785 0.10870 0.11677 0.12496 0.13665 0.15833 

R4 0.09931 0.10992 0.11760 0.12694 0.14376 0.14982 

R5 0.09523 0.11351 0.11782 0.13324 0.13292 0.13424 

B1 0.01428 0.02398 0.04876 0.05831 0.07651 0.08823 

B2 0.01593 0.03356 0.04589 0.05913 0.07791 0.08941 

B3 0.02975 0.03587 0.04671 0.05992 0.07998 0.09230 

B4 0.02769 0.04981 0.03587 0.06134 0.07821 0.08769 

B5 0.02876 0.04127 0.05912 0.06325 0.07993 0.09184 

V1 -0.23765 -0.23687 -0.47198 -0.56713 -0.69341 -0.78491 

V2 -0.13721 -0.41874 -0.45980 -0.59173 -0.68274 -0.71463 

V3 -0.27931 -0.33791 -0.51381 -0.55791 -0.66419 -0.86391 

V4 -0.15920 -0.45217 -0.45917 -0.61598 -0.77529 -0.81429 

V5 -0.17094 -0.36791 -0.46098 -0.66790 -0.71451 -0.86109 

 

The results show that the minimum CV value (Cursor Value) of various samples is -0.86391, the 

maximum value is 0.15833, and the CV value distribution of ground objects is relatively continuous and uniform. 

To avoid random error interference, [-1, 0.2] is used as the threshold range for MSA to calculate micro-patches. 

After the MSA operation, the micro-patches are all represented as single-band grayscale images (Figure 

6). The corresponding CV values of each pixel are different. As the CV value of the pixel decreases, the color 

becomes brighter, and the vegetation color is the most brilliant. In this study, based on the visual interpretation 

method, the CV value statistics were compared with the positions of different micropatches in the original 

image to determine the threshold range of three types of micro-patches (Figure 7). The vegetation threshold 

range is [-0.86391, 0], the bare soil threshold range is [0, 0.09264]. The mouse hole threshold range is [0.09264, 

0.15833]. 

 
Fig. 6 - Grayscale image of MSA operation 

 

 
Fig. 7 - Threshold distribution between micropatches 
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To avoid the threshold division's contingency and verify the threshold interval's robustness, this study 

again selects different samples to perform the MSA index operation. After the operation, the results are divided 

according to the threshold value (Figure 8). 

 

    
a. MSA operation grayscale image b. vegetation c. bare soil d. rat hole 

Fig. 8 - Comparison of the positions of each micro-plaque 

 

 

Accuracy verification 

The Kappa coefficient is calculated based on the confusion matrix and used to measure the accuracy 

of surface classification in the remote sensing field (Pan et al, 2017). The formula is as follows: 
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where: K represents the Kappa coefficient, 𝑥𝑖𝑖  represents the mixing matrix, n represents rows and columns, 

𝑥𝑖+ represents the sum of the error matrix in the 𝑖 row, 𝑥+𝑖  represents the sum of the error matrix in the i 

column, and N represents the sum of the number of pixels in the image. 

After data preprocessing, the remaining quadrats are subjected to accuracy verification, and the data 

images obtained after the MSA index operation are subjected to the best separability threshold verification. 

The obtained mask file is subjected to pixel data statistics, the confusion matrix is listed (Table 3), the calculated 

Kappa coefficient is 0.906, and the overall classification accuracy is 92.1%. The results show that the MSA 

index method has a better effect on identifying and classifying desert steppe micropatches. 

 

Table 3 

MSA-based confusion matrix 

MSA 
Classification result 

Bare soil Vegetation Rat hole Total 

Bare soil 1908 124 63 2095 

Vegetation 96 3174 58 3328 

Rat hole 52 94 631 777 

Total 2056 3392 752 6200 

 

 

Result analysis 

After the image classification results (Figure 8) and the accuracy verification (Table 4), it was found that 

the MSA index has good applicability for the classification of desert steppe micropatches, and the classification 

accuracy is high. However, after analysis, it is found that there are still errors in the classification process of 

various pixels. Mainly due to the staggered distribution of various micro-patches and the change of the angle 

of direct sunlight during the data collection process, some pixels are blended during the data collection process, 

and the difference in spectral reflectance of characteristic bands is weakened, resulting in misclassification. 

Compared with the mask and original image pixels, the misclassified mixed pixels are mainly located at the 

edge of the mouse hole, the shadow area under direct sunlight, and the intersection position of micro-plaques. 

Based on this error, higher requirements are put forward for the micro-patches division. 
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Table 4 

Kappa coefficient and overall classification accuracy 

Accuracy category coefficient 

Kappa coefficient 0.906 

Overall classification accuracy 92.1% 

CONCLUSIONS 

Desert steppe has low plants, narrow leaves, and random distribution among different ground objects, 

which leads to difficulty in classification. In response to the above problems, this study first proposed and 

applied the MSA method to realize the identification of micro-patches on the surface of desert grasslands, 

breaking through the limitations of traditional methods and providing a theoretical basis for the use of remote 

sensing methods to calculate the coverage of grassland vegetation.  

The main conclusions are as follows:  

1) Through the analysis of the spectral characteristic curve of the micro-patches in the area of interest, 

and based on the first-order operation of the spectral reflectance curve, three types of micro-patches with 

relatively large spectral characteristics were found;  

2) For the desert steppe NDVI, SAVI, RVI, EVI operations were performed on micropatches, and after 

comparing their classification effects, it was found that the four types of indices could not achieve fine 

classification for the three types of micropatches, and there was an intersection between different micropatch 

thresholds;  

3) MSA method It can weaken the influence of noise on hyperspectral images, restore the actual spectral 

characteristics of surface micro-patches, break the traditional methods of difficult statistics and high risk 

coefficients of desert grassland features, and improve the classification accuracy;  

4) From the verification results looking at the MSA method not only improves the classification accuracy 

of grassland surface micropatch processing, but also effectively simplifies the hyperspectral classification 

process. 

The MSA provides a data analysis method for the vegetation inversion of desert grasslands. It can be 

widely used in classifying surface micropatches in the grassland degradation process to achieve the grassland 

monitoring effect. This is crucial to identifying and classifying surface micropatches in a desert steppe. 

Problems in the data classification process include misclassification of mixed pixels and differences in 

reflectivity of similar micro-patches. These problems lead to specific errors in classification accuracy. Therefore, 

it is still necessary to strengthen the fine classification of surface micro-patches to improve the classification 

accuracy. In the following experiment, the above method will be applied to UAV low altitude hyperspectral data 

analysis to achieve rapid, large area and accurate identification and classification of desert grassland surface 

micro patches and provide the possibility for extensive area grassland degradation monitoring in the future. 
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